

Development of Direct Drive Marine Propulsion Dual Fuel Engine "Niigata 28AHX-DF"

Zhide XU Niigata Power Systems Co., Ltd.

Marine field regulations

EMISSION CONTROL AREAS (ECA)

ECA: Baltic sea (SOx)

North sea (SOx)

North america - US coast 200 miles (NOx, SOx and PM), 2012

Puerto Rico - Adjacent sea (NOx, SOx and PM), 2014

US Virgin Islands - Adjacent sea (NOx, SOx and PM), 2014

		Year	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
Annex of MARPOL	NOx			Tier II (Global)					Tier III in Emission Control Area									
	SOx	GLOBAL	4.5	3.5							0.5 *							
	(Sulfur limit % m/m)	SOx (SECA)	1					0.1										
2012/33 SOx		1.5%:Passenger Ships ,2006									0.5 (EU All sea area),2020							
/EU	0.10% : All ships at berth, 2010																	

* alternate date of application 2025, depending on the outcome of a review, to be concluded by 2018

Gas fueled engines emit low NOx, therefore, it is possible to meet IMO Tier III by the engine itself.

Gas fueled engine for marine application

Gas Engine Cate	egory	4SC HS	4SC MS	2SC LS	Merit	Demerit		
Spark Ignited	Otto cycle	×	×	—	Mono fuel Cost effective Low NOx, Tier III compliance	Redundancy		
Low Press. Dual Fuel	Otto cycle	—	×	×	Redundancy Lower cost than HPDF	Two sources of fuel		
High Press. Dual Fuel	Diesel cycle	_	×	×	Redundancy Knock resistance Fuel variation other than NG	Two sources of fuel High press. compressor Initial cost Higher NOx than LPDF		

Propeller Drive	4SC HS	4SC MS	2SC LS	Merit	Demerit	
Direct Drive Propeller	FPP CPP	?	×	×	Cost effective High fuel efficiency	Quick load change may be difficult(esp. FPP)
Electric Drive Propeller	FPP CPP Inverter	×	×	_	Capability of quick load change	Higher cost Lower fuel efficiency

4SC: 4 stroke cycle H 2SC: 2 stroke cycle M

HS: High Speed MS: Medium Speed LS: Low Speed

The most cost effective, with highest fuel efficiency and redundancy / safe navigation solution is; Low Pressure Dual Fuel Engine with Fixed Pitch Propeller (FPP)

MGATA Specification of marine gas engine

The base model is latest diesel engine, 28AHX.

Items	Specification
Developed	28AHX-DF
engine	Dual fuel engine
Bore	280mm
Stroke	390mm
Engine speed	800min ⁻¹
Ignition method	Direct injection
(gas mode)	Micro pilot ignition
B.M.E.P.	2.0 MPa
Fuel gas	LNG, NG (gas phase)
	MN = 65
Fuel oil	MDO

MGATA Target engine performance

Gas mode

- ✓ IMO NOx Tier III compliant
- ✓ Same transient performance as current diesel engine
- Same output and flexible mode change between diesel and gas mode at any load
- ✓ Quick mode change to diesel in case of emergency
- ✓ Knocking free operation

Diesel mode

✓ IMO NOx Tier II compliant

MGATA Target transient performance

Target of ships

Tugboat with direct drive in harbor is target. This is the biggest challenge for gas engine. However, it can also be applied to other marine applications if the direct drive propulsion is possible.

Quick load increase is demanded at tugboat operation.

7th CIMAC CASCADES 2015

Oct. 16th, 2015

Development of 28AHX-DF engine

7th CIMAC CASCADES 2015

Oct. 16th, 2015

To improve transient performance, secure of sufficient air flow and suppression of knocking is necessary

MGATA Optimized air-fuel control

7th CIMAC CASCADES 2015

Oct. 16th, 2015

MGATA Switching of engine operation mode

Realized mode change at 100% load

MGATA Exhaust emission characteristics

IMO NOx emission standards

New engine meets NOx regulation of IMO Tier III in gas mode and Tier II in diesel mode.

GATA First delivery of 28AHX-DF

Niigata delivered two sets of 28AHX-DF

Soruce : http://www.nyk.com/release/3560/004044.html

Two sets of 28AHX-DF have been delivered last December as key hardware of direct drive marine propulsion system for the tugboat. This September, the tugboat has been put into operation.

7th CIMAC CASCADES 2015 Oct. 16th, 2015 Copyrights reserved Niigata Power Systems Co., Ltd.

28AHX-DF has great success

- In gas mode, it meets NOx regulation of IMO Tier III.
- Transient performance comparable to diesel engine was achieved in gas mode.
- Redundancy of safety operation was verified in switching operation mode test.
- Reliability and durability of engine components were verified in endurance test.
- Niigata delivered newly developed dual fuel engine to Japan's first LNG fueled ship. This is the world's first built direct drive FPP LNG fueled ship.

Thank you for your attention.

Acknowledgement

The Dual Fuel marine propulsion engine 6L28AHX-DF introduced today uses part of technology from the research development which was selected as a supported project of "Research project of CO_2 reduction from marine vessels" by Ministry of Land, Infrastructure, Transport and Tourism, selected as a supported project by Nippon Kaiji Kyoukai(Class NK), selected as a joint research with Japan Ship Technology research association and financially supported by the NIPPON Foundation.

NIIGATA expresses sincere appreciation to these associations and foundation.