Marine Gas Engine Development October 15, 2015 **Development Department** **Large Power Products Operations Business** #### **Environmental Impact Material and GHG Reduction Schedule** ### Gas Engine Merit for Ships | NI - | •• | 1 | | effe | ect | q: | To also to the conditional | |------|------------|--|-------------|----------------------|-----|-----------------|--| | No | item | description | NOx | SOx | PM | CO ₂ | Tasks to be solved | | 1 | SCR | NOx deoxidation by the catalyst | 0 | _ | s | - | Urea cost, maintenance Prevention of ammonia leakage | | 2 | Scrubber | Removing SOx by seawater wash | \triangle | 0 | 0 | - | Purification of polluted seawater | | 3 | EGR | Exhaust gas recirculation | 0 | 5 3 - 5 5 | × | × | Engine durabilityEfficiency drop recovering | | 4 | Emulsion | Combustion
temperature decrease
by emulsion fuel | 0 | - | 0 | | Mass pure water production device Engine durability | | 5 | Gas engine | Operation by natural gas | 0 | 0 | 0 | 0 | Fuel supply infrastructureFuel storage in ships | Gas engine is the most effective solution to reduce all exhaust emissions simultaneously. Remarks: © excellent O good \triangle not so bad \times bad # **Development Policy of Marine Gas Engine** #### **Base Engine** Pure Gas EY26 Marine Diesel Engine **Dual Fuel** # 6EYG26L Pure Gas Engine #### Marine Gas Engine #### Pure Gas Engine EYG26L - Electric propulsion marine main Engine - Auxiliary equipment | | | 0 | |--|--|---| |--|--|---| ## Advantage - Superior thermal efficiency - ♦ Low emission. - Simple structure and clean combustion | Model | 6EYG26L | | | |-------------------|---|--|--| | Combustion system | Pre-chamber lean barn miller cycle | | | | Ignition system | Spark ignited | | | | Fuel gas | Natural gas (36.0~40.6 MJ/N m³) | | | | Exhaust volume | 122.6L (6-ф280mm×385mm) | | | | Output | 1350kWm / 720min ⁻¹
1280kWe | | | | NOx | 1.3 g/kWh | | | | CO ₂ | 429 g/kWh | | | #### **Technical issues** - Strength of load fluctuation - Changes in fuel composition #### Marine Gas Engine Technology: Transient Load Changing #### Air-Fuel Ratio Control A/F control result by main throttle and By-pass valve The air-fuel ratio control against the load fluctuation is performed quickly. #### Marine Gas Engine Technology: Fuel Calorie change > The Air-Fuel ratio is changed by fuel calorie variation. #### Fuel calorie control system M.C.P. (Maximum Combustion Potential) : Indicator of the combustion velocity #### NOx Emissions in Case of Changing Fuel Calorie - The air-fuel ratio control by the load fluctuation prediction - Controlling the air-fuel ratio by the gas calorie change #### Demonstration test results in gas calorie change - The air-fuel ratio control by the load fluctuation prediction - Controlling the air-fuel ratio by the gas calorie change # 6EY26DF Dual fuel Engine #### Marine gas engine #### Dual fuel eng. EY26DF (1530 kWm) - Main propulsion engine - Ocean-going vessels auxiliary | Model | 6EY26DF | | | | | |-------------------|--|--|--|--|--| | Combustion system | Lean barn miller cycle | | | | | | Ignition system | Micro pilot injection | | | | | | Fuel gas | Natural gas (36.0~40.6 MJ/N m³)
MDO | | | | | | Exhaust volume | 122.6L (6-φ280mm×385mm) | | | | | | Output | 1530kWm / 750min ⁻¹ | | | | | | NOx | < 2.0 g/kWh | | | | | | CO ₂ | 25% reduction (vs diesel ratio) | | | | | - ♦ The flexibility for the use fuel - Redundancy due to dual fuel - The high output by the micro-pilot ignition #### **Technical issues** - Fuel changeover control(Backup) - Acceleration as main propulsion engine #### **6EY26DF Operation Schedule** ## Demonstration test results in Change-over with Load #### Demonstration test results in Change-over for Safety Action #### Demonstration test results in Avoid Knocking - When the knock is detected, the injection timing is retarded instantaneously. - The knock is lost and the engine can be accelerated. #### Diesel & Gas test result in Acceleration Performance #### Acceleration with Load The Gas mode acceleration performance is same as the Diesel mode. #### Summary - Yanmar developed the marine gas engine and the dual fuel engine for corresponding to exhaust emissions regulations in the future. - ➤ The adoption of a new lambda control technology enabled the correspondence of the load variation and the calorie variation. - The engine can avoid knocking instantly by automatic injection retard. And it can continue on the gas mode operation. - ➤ The engine can change from the gas mode to the diesel mode in case of the gas mode failure in instantly. Then the engine can continue operation.