

Marine Gas Engine Development

October 15, 2015

Development Department

Large Power Products Operations Business

Environmental Impact Material and GHG Reduction Schedule

Gas Engine Merit for Ships

NI -	••	1		effe	ect	q:	To also to the conditional
No	item	description	NOx	SOx	PM	CO ₂	Tasks to be solved
1	SCR	NOx deoxidation by the catalyst	0	_	s	-	 Urea cost, maintenance Prevention of ammonia leakage
2	Scrubber	Removing SOx by seawater wash	\triangle	0	0	-	 Purification of polluted seawater
3	EGR	Exhaust gas recirculation	0	5 3 - 5 5	×	×	Engine durabilityEfficiency drop recovering
4	Emulsion	Combustion temperature decrease by emulsion fuel	0	-	0		 Mass pure water production device Engine durability
5	Gas engine	Operation by natural gas	0	0	0	0	Fuel supply infrastructureFuel storage in ships

Gas engine is the most effective solution to reduce all exhaust emissions simultaneously.

Remarks: © excellent O good

 \triangle not so bad \times bad

Development Policy of Marine Gas Engine

Base Engine

Pure Gas

EY26 Marine Diesel Engine

Dual Fuel

6EYG26L Pure Gas Engine

Marine Gas Engine

Pure Gas Engine EYG26L

- Electric propulsion marine main Engine
- Auxiliary equipment

		0
--	--	---

Advantage

- Superior thermal efficiency
- ♦ Low emission.
- Simple structure and clean combustion

Model	6EYG26L		
Combustion system	Pre-chamber lean barn miller cycle		
Ignition system	Spark ignited		
Fuel gas	Natural gas (36.0~40.6 MJ/N m³)		
Exhaust volume	122.6L (6-ф280mm×385mm)		
Output	1350kWm / 720min ⁻¹ 1280kWe		
NOx	1.3 g/kWh		
CO ₂	429 g/kWh		

Technical issues

- Strength of load fluctuation
- Changes in fuel composition

Marine Gas Engine Technology: Transient Load Changing

Air-Fuel Ratio Control

A/F control result by main throttle and By-pass valve

The air-fuel ratio control against the load fluctuation is performed quickly.

Marine Gas Engine Technology: Fuel Calorie change

> The Air-Fuel ratio is changed by fuel calorie variation.

Fuel calorie control system

M.C.P. (Maximum Combustion Potential) : Indicator of the combustion velocity

NOx Emissions in Case of Changing Fuel Calorie

- The air-fuel ratio control by the load fluctuation prediction
- Controlling the air-fuel ratio by the gas calorie change

Demonstration test results in gas calorie change

- The air-fuel ratio control by the load fluctuation prediction
- Controlling the air-fuel ratio by the gas calorie change

6EY26DF Dual fuel Engine

Marine gas engine

Dual fuel eng. EY26DF (1530 kWm)

- Main propulsion engine
- Ocean-going vessels auxiliary

Model	6EY26DF				
Combustion system	Lean barn miller cycle				
Ignition system	Micro pilot injection				
Fuel gas	Natural gas (36.0~40.6 MJ/N m³) MDO				
Exhaust volume	122.6L (6-φ280mm×385mm)				
Output	1530kWm / 750min ⁻¹				
NOx	< 2.0 g/kWh				
CO ₂	25% reduction (vs diesel ratio)				

- ♦ The flexibility for the use fuel
- Redundancy due to dual fuel
- The high output by the micro-pilot ignition

Technical issues

- Fuel changeover control(Backup)
- Acceleration as main propulsion engine

6EY26DF Operation Schedule

Demonstration test results in Change-over with Load

Demonstration test results in Change-over for Safety Action

Demonstration test results in Avoid Knocking

- When the knock is detected, the injection timing is retarded instantaneously.
- The knock is lost and the engine can be accelerated.

Diesel & Gas test result in Acceleration Performance

Acceleration with Load

The Gas mode acceleration performance is same as the Diesel mode.

Summary

- Yanmar developed the marine gas engine and the dual fuel engine for corresponding to exhaust emissions regulations in the future.
- ➤ The adoption of a new lambda control technology enabled the correspondence of the load variation and the calorie variation.
- The engine can avoid knocking instantly by automatic injection retard.
 And it can continue on the gas mode operation.
- ➤ The engine can change from the gas mode to the diesel mode in case of the gas mode failure in instantly. Then the engine can continue operation.

