

PEKKA NOUSIAINEN / AGCO POWER ENGINEERING

8TH CIMAC CASCADES

SEMINAR FOR YOUNG ENGINEERS

"SMART, CLEAN & EFFICIENT ENERGY CONVERSION SOLUTIONS"

MAY 4-5, 2017, HELSINKI

TECHNOLOGY EVOLUTION

Off-road Diesel engine evolution from 50's till today

- Power density (BMEP) increase, fuel consumption decrease
- Breakthrough for electronic control and aftertreatment systems in 2000's

1957 - 2017

AGCO POWER CURRENT TECHNOLOGY

Optimized base engine raw emissions & efficient DOC+SCR

DOC = Diesel Oxidation Catalyst

SCR = Selective Catalytic Reduction

ASC = Ammonia Slip Cat

1	AGCO Corporation & AGCO Power
2	Applications
3	Stage V legislation
4	Stage V technology
5	Summary

LEADING BRANDS

AGCO CORPORATION

AGCO POWER FOUR ENGINE FACTORIES

- o 3, 4, 6, 7 and 12 cylinders
- \circ 50 500 kW
- o Capacity 110 000 engines

1	AGCO Corporation & AGCO Power
2	Applications
3	Stage V legislation
4	Stage V technology
5	Summary

AGCO POWER REFERENCES - TRACTORS

AGCO POWER REFERENCES – AGRICULTURAL APPLICATIONS

SAMPO ROSENLEW

AGCO POWER REFERENCES – OTHER OFF-ROAD APPLICATIONS

AGCO POWER APPLICATIONS LOAD PROFILES

Huge variety in load profiles

- Exhaust gas temperature variations
- Challenge for optimization of base engine and aftertreatment systems

1	AGCO Corporation & AGCO Power
2	Applications
3	Stage V legislation
4	Stage V technology
5	Summary

AGCO POWER EXHAUST EMISSIONS LEGISLATION

Stage V particulate number (PN) limit *) forces to use Diesel Particulate Filter

AGCO POWER EXHAUST EMISSIONS LEGISLATION

Real Driving Emissions (RDE) monitoring in the field

- Continuous monitoring via sensors and actuators
- Stage V In-Service Monitoring
- Will be performed in the field as a separate campaigns, with customer vehicles
- Measured with PEMS (NO_x, CO, CO₂ and HC) by the engine manufacturer
- Collected data will be evaluated by European
 Commission, used as a guide for future legislation

5	Summary
4	Stage V technology
3	Stage V legislation
2	Applications
1	AGCO Corporation & AGCO Power

AGCO POWER ENGINEERING

Stage V engine – integration of sophisticated base engine and aftertreatment systems – and the <u>models</u>

- Base control fuctions
- Raw emission models

- DOC models
- SCR models
- DPF models

AGCO POWER ENGINEERING / COMBUSTION DEVELOPMENT

New emission requirement – a new base engine combustion system development

AGCO POWER ENGINEERING / EXHAUST GAS AFTERTREATMENT

Exhaust Aftertreatment control requires state-of-the-art models

Example: Engine Raw Particulate emission model

NRTC cycle: Model vs. Measurement

Field cycle: Model vs. Measurement

AGCO POWER ENGINEERING / EXHAUST GAS AFTERTREATMENT

Diesel Particulate Filter operating principle

http://www.technology.matthey.com/wp-content/uploads/articles/53/1/Twigg-53-1-jan09-f4.jpg

1. Soot collection to walls of inlet channels

2. Soot regeneration

- Oxidation with NO₂ (> ≈ 250°C) = Passive regeneration
 - Takes place during normal operation
- Oxidation with O_2 (> $\approx 550^{\circ}$ C) = Active regeneration
 - Needs fuel injection to increase temperature

AGCO POWER ENGINEERING / EXHAUST GAS AFTERTREATMENT

AGCO Power Stage V EAT system (> 56 kW)

DPF regeneration

- Primary method: Passive regeneration during normal vehicle operation (> 250 °)
- Secondary method: Stand-still active regeneration (> 550 °)
 - Trigger from Δp and modelled DPF soot loading

5	Summary
4	Stage V technology
3	Stage V legislation
2	Applications
1	AGCO Corporation & AGCO Power

SUMMARY

- AGCO Power develops and manufactures low emission diesel engines for global off-road use
- Todays aftertreatment solution is DOC + SCR
- Base engine calibration is partly done with DOE tools
- Next emissions step is StageV (Europe), 2019
- Diesel Particualte Filter will be mandatory
- Sophisticated DPF regeneration and SCR controls are key to success (variation of applications load profiles & exhaust temps)
- Lots of high-tech models are used in the ECU
- Stage V will require effective emissions field monitoring

DOE = Design of Experiments

EXTREME STRENGTH

