

5th CIMAC CASCADES / Jin-woo Seong, 2014-10-23

Flexibility in Turbocharging Opportunities and Options

Flexibility in Turbocharging

Topics

Introduction

2-stage Turbocharging and Variable Valve Timing

Potential for Otto Gas and DF Engine Applications

- Stationary EPG
- Medium Speed Dual Fuel MARINE Propulsion
- High Speed MARINE Propulsion

Summary

Flexibility in Turbocharging Introduction

Opportunities

- Increased engine efficiency
- New applications / extended operation range
- Improved load response
- Standardization
- High altitude capabilities
- New control possibilities

Power2 and VCM Two-stage turbocharging

Basic potential

- Pressure ratios of up to 12
- Turbocharging efficiencies above 75%

Power2 and VCM Two-stage turbocharging

Basic potential

- Pressure ratios of up to 12
- Turbocharging efficiencies above 75%

•With higher pressure ratio ...

- $\Rightarrow \dots$ increase in η_{TC}
- \Rightarrow ... increase in Δp_{Cyl}
- \Rightarrow ... more compact 2-stage system

Power2 and VCM VCM configuration

- VCM is a cam-supported electrohydraulic valve train
- Components
 - 1. Pump unit
 - 2. High-pressure chamber
 - 3. Solenoid valve
 - 4. Brake unit
 - 5. Medium-pressure chamber
 - 6. Pressure accumulator

Power2 and VCM VCM functional principle

 Cam profile transmitted via pump through the high pressure chamber to the engine valve (solenoid valve closed)

Power2 and VCM VCM functional principle

- Cam profile transmitted via pump through the high pressure chamber to the engine valve (solenoid valve closed)
- High-pressure area closed and opened towards middle pressure area by fast switching solenoid valve (SV)

Power2 and VCM VCM functional principle

- Cam profile transmitted via pump through the high pressure chamber to the engine valve (solenoid valve closed)
- High-pressure area closed and opened towards middle pressure area by fast switching solenoid valve (SV)
- Engine valve closing not cam controlled (ballistic phase); seating velocity controlled by hydraulic brake

Power2 and VCM VCM capabilities

- Individual valve control
 - Lift height
 - Opening time
 - Closing time
- Steep closing flanks
- No increase of mechanical load
- Variation from cycle-to-cycle

Power2 and VCM Status product development

Power2

- Testing on ten different engine platforms completed, ongoing or under preparation
- Two systems of first generation released, serial deliveries for over 120 engines
- Second generation prototype testing on engine ongoing

VCM

- Over 5,000 rhs with two prototypes operated on mechanical test beds, single and multi cylinder engines
- Highly integrated design for first customer application realized
- Thermodynamic potential exceeding expectations

Potential for Gas Engine Applications Stationary EPG

(baseload, industrial, back-up, ...)

Development drivers

- •Engine efficiency \Rightarrow 1%pt = ~15 \in /kW savings p.a.¹)
- •Power Density \Rightarrow lower 1st cost/kW, smaller engine footprint
- -Robustness \Rightarrow lower MN, altitude, ambient temperature

Possibilities with Power2 and VCM

- - λ control via IVC variation replacing conventional control elements
- increase Miller timing, keeping high valve lift
- •use lower temperature at start of compression:
 - \Rightarrow higher compression ratio ϵ
 - \Rightarrow increased engine bmep / p_{Zmax}
- utilize high turbocharging efficiency @ high pressure ratio

Potential for Gas Engine Applications Stationary EPG

(baseload, industrial, back-up, ...)

Potential for Gas Engine Application MARINE Propulsion – Diesel Electric

(Cruise & Ferries, LNG carriers, RO-RO/PAX, ...)

Development drivers

 Engine efficiency ⇒ optimize gas mode, minimize compromise in Diesel mode

- Power Density ⇒ lower 1st cost/kW, less cylinders, smaller engine footprint
- ■Emissions ⇒ IMO III compliance in Gas mode, no related aftertreatment

Current challenges

-Low ϵ in gas mode leads to poor performance in Diesel mode

 Operation in Diesel mode leads to significant higher TC pressure ratio needs (closed WG)

- limitations by TC speed
- further reduced Diesel performance due to too high λ_V

Potential for Gas Engine Application MARINE Propulsion – Diesel Electric

(Cruise & Ferries, LNG carriers, RO-RO/PAX, ...)

Potential for Gas Engine Applications MARINE Propulsion – Direct Drive

(Tug & Salvage, Inland Waterways, Pleasure Crafts, ...)

Development drivers

•Operational cost \Rightarrow gas price lower than MDO, engine efficiency

•Emissions legislation \Rightarrow no NOx aftertreatment, no particulates

•Wide operating range

Simulation example:

Diesel reference:

- 17.5 bar bmep @ 1'800 rpm
- FPP, torque rise to 20 bar bmep
- Sequential turbocharging

Gas:

- Lean burn, port injection
- 15% increase bmep
- 1-stage turbocharging

 \Rightarrow FPP, high torque, load response, maneuverability

© ABB Group October 6, 2014 | Slide 16

Potential for Gas Engine Applications MARINE Propulsion – Direct Drive

(Tug & Salvage, Inland Waterways, Pleasure Crafts, ...)

Approach steady-state operation

 High pressure 1-stage turbocharging and strong Miller timing

-Load- and λ_V -control through VCM and gas admission value

- ⇒ max. torque well covered with high pressure 1-stage turbocharging and VCM
- ⇒ good bsfc characteristic and low exhaust gas temperatures over entire operating range

Potential for Gas Engine Applications MARINE Propulsion – Direct Drive

(Tug & Salvage, Inland Waterways, Pleasure Crafts, ...)

Approach transient operation

Max. cylinder filling through optimized IVC timing

-Max. gas injection without falling below min. $\lambda_{\rm V}$

Acceleration from 900-1800rpm

- \Rightarrow fast and «step-less» load response based on simulations
- \Rightarrow equal or even better than current diesel feasible

Power2 and VCM Summary

- High pressure turbocharging and VCM enable high bmep gas engines for demanding applications:
 - Engine efficiency gains of min 2%pts for stationary EPG applications (first test results)
 - Dual Fuel capabilities with optimized gas operation without compromising the Diesel performance (high ε)
 - Unrestricted operational flexibility including traditional high speed diesel applications

Power and productivity

