Research & Technology, New Propulsion Systems (TR-S)

New propulsion systems for non-road applications and the impact on combustion engine operation

London, 14th March 2014, Benjamin Oszfolk

Power. Passion. Partnership.

Content

- 1 Incentive
 - 1.1 Non-road-applications / MTU products
 - 1.2 Trend of reducing CO₂ emission
 - 1.3 Technological challenges of ICE & propulsion system
- 2 Electrical enhanced propulsion systems
 - 2.1 E-Drive system
 - 2.2 E-Drive components
 - 2.3 Functional benefits
- 3 Railcar E-Drive propulsion system
 - 3.1 Application
 - 3.2 System layout & fuel savings
 - 3.3 Impact on internal combustion engine
- 4 Summary

01

Incentive

01 Incentive Non-road applications / MTU products

MTU applications

requirements

drive trains

01 Incentive Trend of reducing CO₂ emissions

A significant step towards future CO₂-targets and reduction in life cycle cost will be achieved only by optimising both, internal combustion Engine and propulsion system

Benefits of new propulsion systems:

- Optimised engine operation \rightarrow reduction of real life exhaust gas emissions (NO_x, PM, HC)
- Functional enhancement (e.g. boost capability, temporary silent operation, strong on-board electrical grid)

01 Incentive Trend of reducing CO₂ emissions

The IC engine is able to deliver maximum power at any time and at short notice

power-oriented rating and dynamics-optimised operating strategy

01 Incentive Technological challenges of ICE & propulsion system

Future IC engine delivers the energy for a specified mission within a mean power range

energy-oriented rating with efficiency-optimised operating strategy

Electrical enhanced propulsion systems

02 Electrical enhanced propulsion systems E-Drive system

02 Electrical enhanced propulsion systems E-Drive components

Controls

- Power and Energy Management
- Interface to the Application
- SafetyFunctionality

E-Machine

- Electric motor for propulsion
- Generator
- E-Motor for Auxilliaries

Power Electronics

- Traction Converter
- Geno Rectifier
- Filter element in the DC- or AC-Bus
- Auxiliary Supply / Battery Charger

Battery System

Source & Sink:

- Energy Storage
- Power Buffer

02 Electrical enhanced propulsion systems Functional benefits

Railcar E-Drive propulsion system

03 Railcar E-Drive propulsion system Application

Drive cycle:

- Distance 37 km
- 13 Stops
- 43min
- speed limit 120kph

Vehicle:

- Mass: 78t
- 2 x MTU 6H1800R75 (2 x 315kW)
- Electric motors: 2 x 400kW peak
- Li-Ion-Battery
- Diesel-mechanical / parallel hybrid

03 Railcar E-Drive propulsion system System layout & fuel savings

Implemented features:

- Regenerative braking
- Load point shifting
- Partially electrified auxiliary drives
- Fuel consumption optimized drive strategy

03 Railcar E-Drive propulsion system Impact on internal combustion engine operation

Impact on combustion engine:

- → Increase of 55% of fuel conversion at high engine loads
- → Still 9% fuel converted at idle speed

Further potential:

- Decoupling auxiliary drives from combustion engine
- Engine shutdown during idling

04

Summary

04 Summary

New propulsion systems for non-road applications:

- New propulsion system concepts are capable of significant fuel savings heavily dependent on the application
- Fuel savings result from optimized operation of internal combustion engine and auxiliary drives
- Fuel savings result from energy recovery

Impact of future propulsion system design on internal combustion engine:

- Increased fuel conversion at high engine loads
- Increased frequency of engine starts
- Engine shutdown during vehicle operation
- → mechanical / thermal fatigue?
- → main bearings, starter lifetime?
- → effect on main bearings?
- → effect on exhaust aftertreatment?

Thank you very much for your attention.

Power. Passion. Partnership.