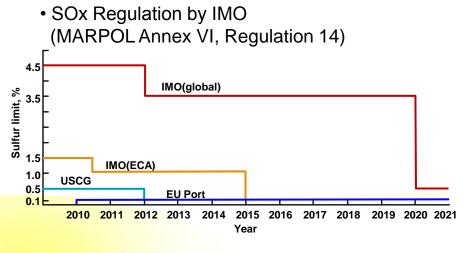
# Shipyard's Perspective: Ship Design – LNG Propulsion Systems

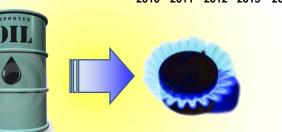
**CIMAC 2011** 26 May, 2011 **Oslo, Norway** 

DongKyu ChoiDaewoo Shipbuilding & Marine Engineering



AEWOO SHIPBUILDING & MARINE ENGINEERING CO.,LTD.


|            | INTRODUCTION           |
|------------|------------------------|
| $\bigcirc$ | DUAL FUEL ENGINES      |
| $\bigcirc$ | LNG FUEL STORAGE TANKS |
| $\bigcirc$ | FUEL GAS SUPPLY SYSTEM |
| $\bigcirc$ | LNG BUNKERING          |
| $\bigcirc$ | SAFETY ISSUES          |
| $\bigcirc$ | LNG FUELED SHIPS       |
|            | CONCLUSIONS            |


# Background

#### **Emission Regulations**

 NOx Regulation by IMO (MARPOL Annex VI, Regulation 13)

| Tier | Construction date on<br>or after | g/kWh (RPM<130) |
|------|----------------------------------|-----------------|
| I    | 1 January 2000                   | 17.0            |
| II   | 1 January 2011                   | 14.4            |
| III  | 1 January 2016                   | 3.4             |





#### **Given Structure Fuel Price**

• Recent Gas & Ship Fuel Price (06 May. 2011)

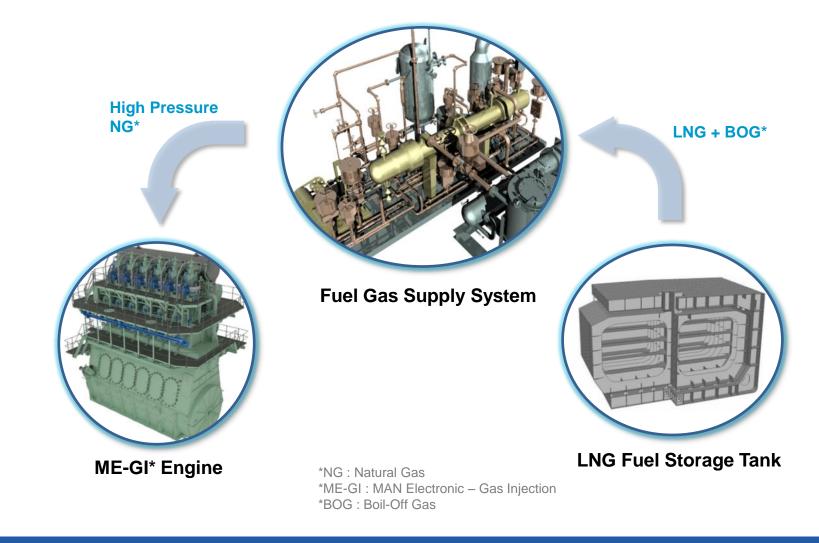
| Fuel                     | Price    |            |
|--------------------------|----------|------------|
| Fuel                     | (\$/ton) | (\$/MMBTU) |
| HFO (IFO380) @ Singapore | 624      | 16.2       |
| MGO @ Singapore          | 941      | 24.5       |
| NG @ Henry Hub           | 218      | 4.6        |

Gas & Ship Fuel Price (Jan. 2006 ~ Apr. 2010)



# **Global LNG Fueled Ships (small size)**

| Vessel                                                              | Storage                         | Year            |              |
|---------------------------------------------------------------------|---------------------------------|-----------------|--------------|
| A few small ships with CNG                                          | CNG (Compressed<br>Natural Gas) | 1982 ~<br>1990s |              |
| Glutra (car & passenger ferry)                                      | LNG (2 x 32m <sup>3</sup> )     | 2000            |              |
| <b>Viking Energy</b> (platform supply vessel)<br>(+ 1 sister ships) | LNG (1 x 234m <sup>3</sup> )    | 2003            |              |
| <b>BergensFjord</b> (car & passenger ferry)<br>(+ 4 sister ships)   | LNG (2 x 125m <sup>3</sup> )    | 2007            |              |
| <b>Kystvakt</b> (coast guard ship)<br>(+ 2 sister ships)            | LNG (1 x 234m <sup>3</sup> )    | 2009            |              |
| <b>Moldefjord</b> (car & passenger ferry)<br>(+ 2 sister ships)     | LNG (2 x 125m <sup>3</sup> )    | 2009            | A CONTRACTOR |
| <b>Viking Queen</b> (platform supply vessel)<br>(+ 1 sister ships)  | LNG (1 x 234m <sup>3</sup> )    | 2009            |              |

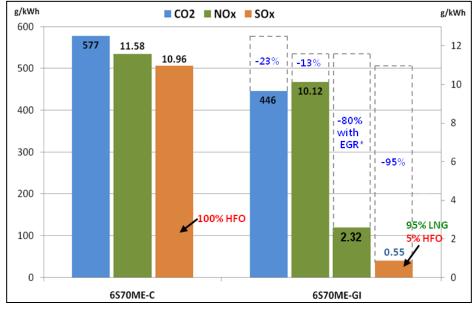

## **For Large Ships**

Large ship requires totally different technologies to utilize LNG as its fuel.

|                          | Small Ships                                        | Large Ships                                   | Consideration                                   |
|--------------------------|----------------------------------------------------|-----------------------------------------------|-------------------------------------------------|
| Propulsion               | 4 Stoke Gas or D/F Engine &<br>Electric Propulsion | 2 Stoke D/F Engine & Mechanical<br>Propulsion | Large Propulsion Power<br>(Bore 90 or 98)       |
| FGS                      | LNG/NG Supply by Tank Pressure                     | New Concept FGS                               | High GI Pressure                                |
| Fuel Tank Type           | Type C Pressure Vessel                             | New Concept Fuel Tank                         | Huge Tank Volume<br>CAPEX, Volume<br>Efficiency |
| BOG<br>Management        | Not Critical                                       | Careful Attention                             | MARVS                                           |
| Fuel Tank<br>Arrangement | Complying with B/5 distance from side hull         | Difficult to meet B/5                         | Cargo Loss, Collision                           |
| Bunkering                | Not Critical                                       | Critical in Method & Time                     | Tank Volume &<br>Operation Schedule             |

#### **LNG Fueled Propulsion System**

#### LNG Fueled Propulsion System for Large Commercial Ships

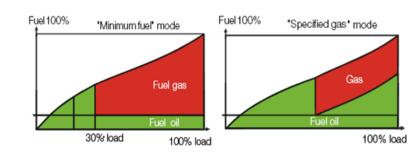



| $\bigcirc$ | INTRODUCTION           |
|------------|------------------------|
|            | DUAL FUEL ENGINES      |
| $\bigcirc$ | LNG FUEL STORAGE TANKS |
| $\bigcirc$ | FUEL GAS SUPPLY SYSTEM |
| $\bigcirc$ | LNG BUNKERING          |
| $\bigcirc$ | SAFETY ISSUES          |
| $\bigcirc$ | LNG FUELED SHIPS       |
| $\bigcirc$ | CONCLUSIONS            |

# **Propulsion Engine: 2-Stroke Dual Fuel Engine**

#### **ME-GI Engine (MAN Electronic – Gas Injection)**

- 2-stroke dual fuel engine made by MAN Diesel
- · Highest efficiency among existing propulsion systems
- Simultaneous Dual Burning (HFO + FG)
- Low CAPEX & OPEX compared to other dual fuel engines
- CO2, NOx, SOx emission reduction

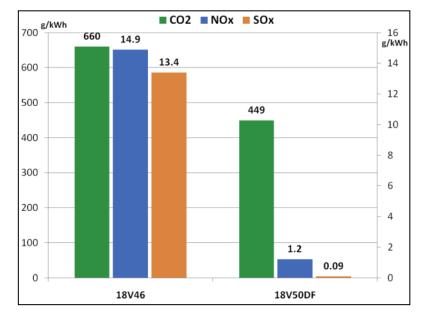



• Emission Comparison between ME and ME-GI in gas mode (Refer to "ME-GI Dual Fuel MAN B&W Engines". Graph by DSME)



• ME-GI Engine

**CIMAC 2011** 




• Variable Gas Operation Mode of ME-GI

# **Generator Engine: 4-Stroke Gas / Dual Fuel Engine**

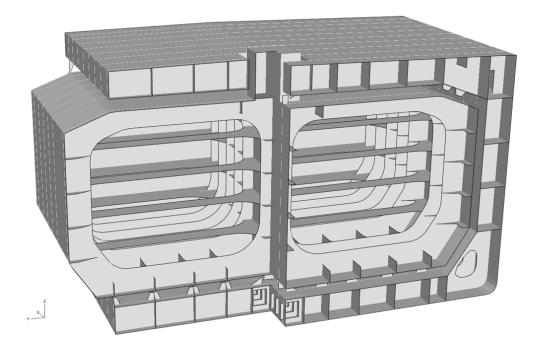
#### **Gas / Dual Fuel Generator Engine**

- 4-stroke, medium speed gas or DF engine
- Oil mode (HFO or MDO, DF engine only) or Gas mode (NG + 1% MDO pilot oil)
- SOx, NOx emission is negligible
- Working gas pressure : 5 ~ 8 bar
- Constant speed (RPM) designed



• DF Engine Emission Comparison. (Ref. "Wartsila 50DF Project Guide")






| $\bigcirc$ | INTRODUCTION           |
|------------|------------------------|
| $\bigcirc$ | DUAL FUEL ENGINES      |
|            | LNG FUEL STORAGE TANKS |
| $\bigcirc$ | FUEL GAS SUPPLY SYSTEM |
| $\bigcirc$ | LNG BUNKERING          |
| $\bigcirc$ | SAFETY ISSUES          |
| $\bigcirc$ | LNG FUELED SHIPS       |
|            | CONCLUSIONS            |

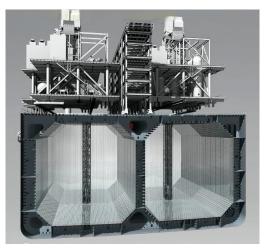
## ACT-IB Storage Tank – IMO Independent Type B

#### ACT-IB Storage Tank (Aluminum Cargo Tank – IMO Independent type B)

- Independent LNG tank
- PUF(Poly-Urethane Foam) panel type insulation
- Inherent increased pressure design (typically 0.7 bar gauge)



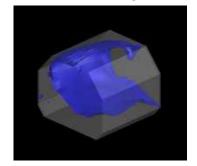
• Independent LNG Fuel Tank Example (ACT-IB)

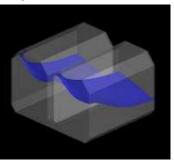



# **Membrane Tank**

□ IGF interim guideline is expected to amended to allow membrane tank for LNG fueled ships

| GTT NO 96 system              |                                                                    |
|-------------------------------|--------------------------------------------------------------------|
| Primary membrane              | 0.7 mm Invar (36% Ni-Fe)                                           |
| Primary insulation material   | Plywood with Perlite                                               |
| Secondary membrane            | 0.7 mm Invar (36% Ni-Fe)                                           |
| Secondary insulation material | Plywood with Perlite                                               |
| Insulation thickness          | 530 mm (230 + 300)                                                 |
| Insulation tightening         | Securing device set                                                |
| Note                          | Anti-sticking treatment between secondary insulation box with hull |


✓ DSME LNG FPSO applied 2 row LNG tank (NO 96 CCS)




✓ Internal view of NO96 CCS



✓ Result of sloshing in 2 row arrangement of NO 96 CCS







12

### **Tank Type Comparison – Owner's Choice**

#### Comparison between GTT NO 96 and DSME ACT-IB

|                                 | GTT NO 96                                | ACT-IB                        |
|---------------------------------|------------------------------------------|-------------------------------|
| CCS type                        | Membrane                                 | Independent type B            |
| Shape of tank                   | Limited (Integrated in hull)             | Free (Prismatic)              |
| Pressure                        | < 0.25 barg (max 0.7)                    | < 0.7 barg                    |
| 2 <sup>nd</sup> barrier         | Yes                                      | Partly (Drip tray)            |
| Insulation thickness            | 530 mm (Internal insulation)             | 270 mm (External insulation)  |
| Material                        | Invar (36% Ni-Fe) + Plywood with Perlite | Aluminum + Poly Urethane Form |
| Support & chock                 | -                                        | Exist                         |
| Weight                          |                                          | Increase (internal structure) |
| Sloshing<br>for partial filling | Two row arrangement and Baffle structure | Swash bulkhead for sloshing   |
| License                         | GTT                                      | DSME                          |
| Experience                      | Over 70 of LNGC/RV                       | -                             |

| $\bigcirc$ | INTRODUCTION           |
|------------|------------------------|
| $\bigcirc$ | DUAL FUEL ENGINES      |
| $\bigcirc$ | LNG FUEL STORAGE TANKS |
|            | FUEL GAS SUPPLY SYSTEM |
| $\bigcirc$ | LNG BUNKERING          |
| $\bigcirc$ | SAFETY ISSUES          |
| $\bigcirc$ | LNG FUELED SHIPS       |
|            | CONCLUSIONS            |

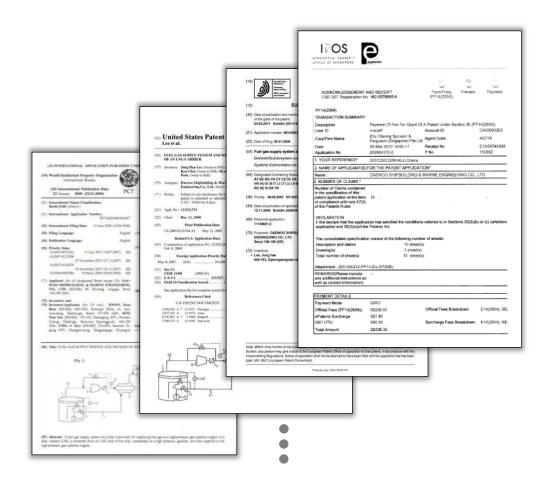
### **Fuel Gas Supply System – DSME HiVAR**

#### **Conceptual Process Flow Diagram**



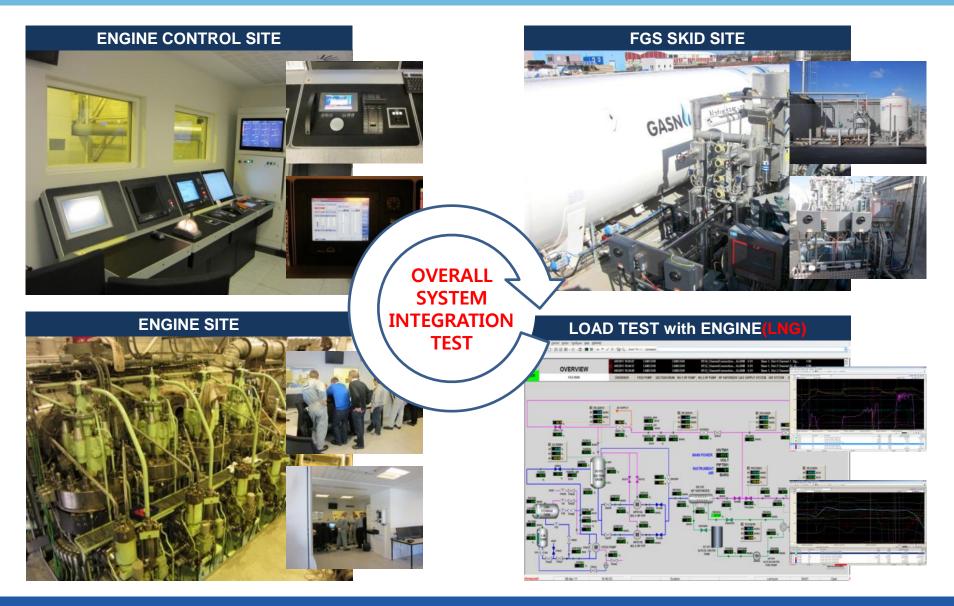
#### Features

- HP Pump + HP Vaporizer
- 300 bar Design Pressure
- BOG Recondensing
- Compact Size
- Low Power Consumption
- Low Noise & Vibration
- Easy Maintenance


| Power Consumption Comparison<br>(for reference) |       |
|-------------------------------------------------|-------|
| HP Compressor<br>System                         | HiVAR |
| 1400 kW                                         | 70 kW |

# **DSME Intellectual Property Rights**

#### **DSME Proprietary Technology**


#### Patent List of DSME HiVAR system

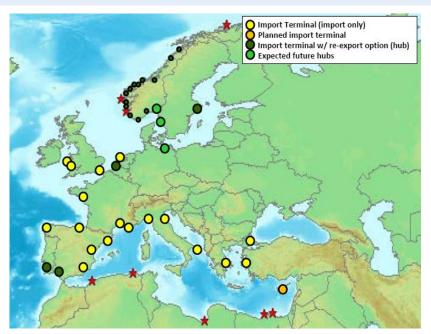
- International Patent Application
  - ✓ Several patents applied since June 2008
  - ✓ Designated States : EP\*(Granted), Singapore(Granted), China, United Arab Emirates
- United States Patent
  - ✓ Several patents applied since Dec 2008
- Patented or Patent Application in Korea
  - ✓ Several patents applied since May 2007
  - $\checkmark$  20 + granted or pending
    - \* EP : United Kingdom, Norway, Sweden, Germany, Belgium, France, Denmark, Greece, Switzerland, Finland



- High pressure fuel gas supply using HP pump and HP vaporizer is subject to intellectual and industrial property rights
  protected by national and international legislation.
- Registered to many countries including US and EU. (Previous arts have been exhaustively checked before registration.)

#### **FGS Operation Test with ME-GI Engine**






| $\bigcirc$ | INTRODUCTION           |
|------------|------------------------|
| $\bigcirc$ | DUAL FUEL ENGINES      |
| $\bigcirc$ | LNG FUEL STORAGE TANKS |
|            | FUEL GAS SUPPLY SYSTEM |
|            | LNG BUNKERING          |
| $\bigcirc$ | SAFETY ISSUES          |
| $\bigcirc$ | LNG FUELED SHIPS       |
|            | CONCLUSIONS            |

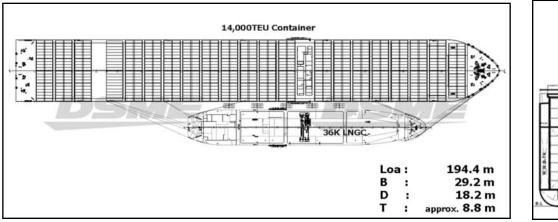
# **LNG Bunkering**

#### **LNG Bunkering Scenarios**

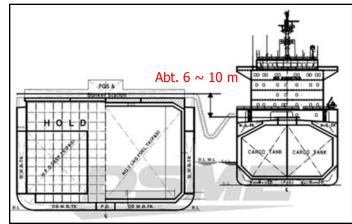
- Tank lorry for small ships
- Existing LNG Import or Export Terminals
- Launching local LNG Liquefaction Facilities for bunkering business
- Ship to Ship Transfer utilizing small LNG Bunkering Ships in
  - Container terminals, or
  - Open sea areas






Zeebrugge LNG Receiving Terminal w/ Re-Export in Belgium

#### LNG Terminals

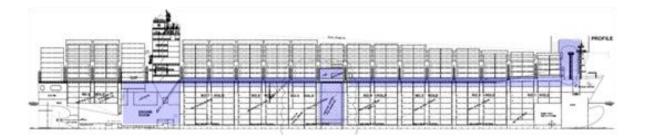

#### **LNG Bunkering Vessel**

#### LNG Bunkering Vessel Concept

- · Pre-requisite for LNG fueled containerships and tankers
- Safe mooring
- Manifold mating
- High speed LNG pumping
- Returned flash gas treatment
- · Safety monitoring and interface systems



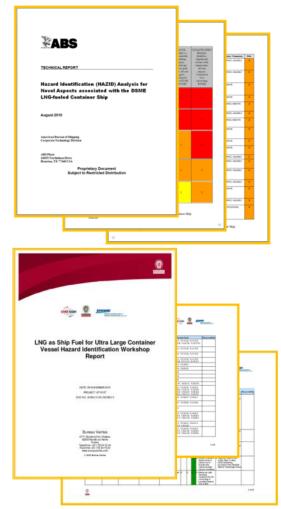
Side by Side Mooring




• Example of Ship to Ship Transfer



| $\bigcirc$ | INTRODUCTION           |
|------------|------------------------|
| $\bigcirc$ | DUAL FUEL ENGINES      |
| $\bigcirc$ | LNG FUEL STORAGE TANKS |
| $\bigcirc$ | FUEL GAS SUPPLY SYSTEM |
| $\bigcirc$ | LNG BUNKERING          |
|            | SAFETY ISSUES          |
| $\bigcirc$ | LNG FUELED SHIPS       |
|            | CONCLUSIONS            |

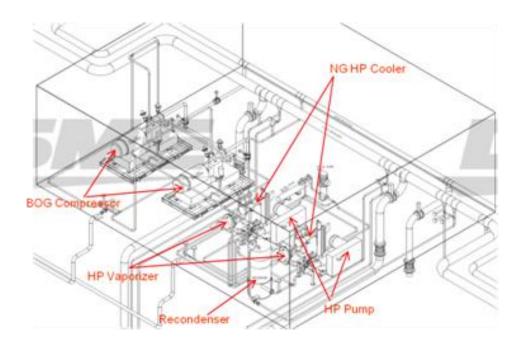

## **Overall Safety Design**



- IGF\* compliant design
- HAZID/HAZOP for LNG fuelled commercial ship
  - Gas existing physical spaces : LNG fuel tank space, FGS room, E/R, vent mast, bunkering station, passage way, etc.
  - Gas operations :

LNG bunkering, FG supply at normal seagoing, drying, inerting, aeration, initial cool down, warming up, etc.

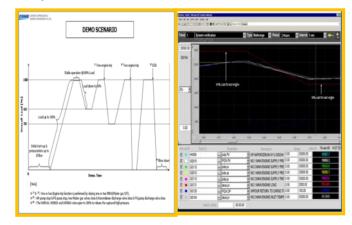
\* IGF : the International Code of Safety for Gas-fuelled Ships. Now it stands as an **interim guideline**.  HAZID for DSME LNG-Fuelled Container Ship (ABS, BV)






#### **FGS Room**

#### **FGS Room Safety**

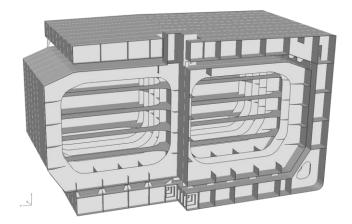

- Explosion proof equipments (motor, etc)
- Ignition source inhibited
- Ventilation systems (30 air change / hour)
- Gas detection & ESD (Emergency Shut Down) system
- Structural integrity against dropping object (container ships)



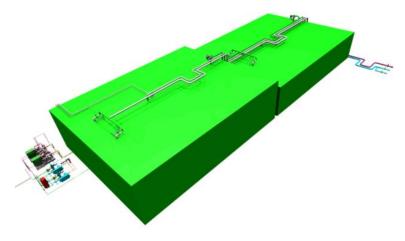
#### • HAZID/HAZOP Study and AIP for FGS



#### Dynamic Simulations







# **LNG Fuel Tank Space**

#### LNG Fuel Tank Safety

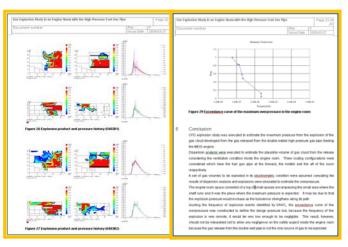
- Tank pressure control by BOG Management
- Emergency venting systems
- Inerting with N2 outside of tank
- Gas detection wystems
- Drip Trays below tank bottom (Secondary Barrier)
- Eductors for drip trays
- Structural integrity against possible collision (container ships)



#### LNG Fuel Storage Tank in Hold Space (Containership)



LNG Fuel Storage Tank Upper Deck (VLCC)



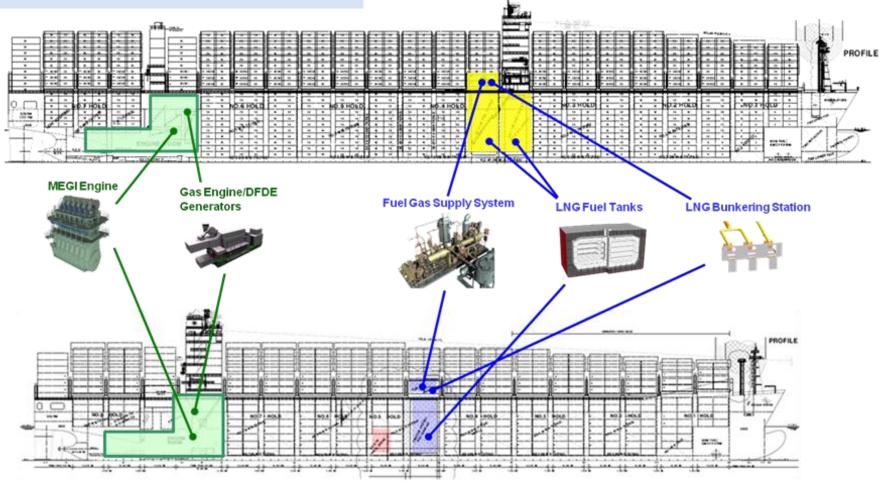

### **Engine Room**

#### **Engine Room Safety**

- Double wall pipe connections
- GVU (Gas Valve Unit) for each gas fueled engine
  - Double block and bleed valves
  - Enclosed GVU room with ventilation
- Ventilation systems
- Gas detection systems
- ESD (Emergency Shut Down) system






• Gas Explosion Study in E/R



| $\bigcirc$ | INTRODUCTION           |
|------------|------------------------|
| $\bigcirc$ | DUAL FUEL ENGINES      |
| $\bigcirc$ | LNG FUEL STORAGE TANKS |
| $\bigcirc$ | FUEL GAS SUPPLY SYSTEM |
| $\bigcirc$ | LNG BUNKERING          |
| $\bigcirc$ | SAFETY ISSUES          |
|            | LNG FUELED SHIPS       |
|            | CONCLUSIONS            |

### **LNG Fueled Container Ship**

#### 14,000 TEU Container Ship



7,450 TEU Container Ship



**DSME** Proprietary

### **LNG Fueled VLCC / VLOC**

#### 318,000 DWT VLCC



400,000 DWT VLOC



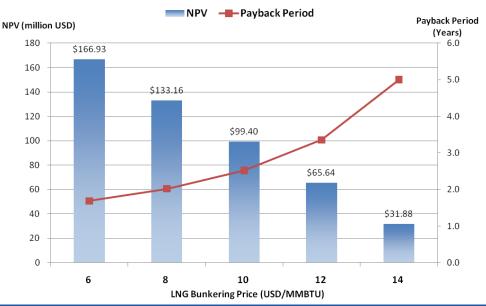
**DSME** Proprietary

### **Economic Evaluation**

#### □ Economic Evaluation Example for 14,000 TEU Container Ship

• Target Route (Europe-Asia Line)

Expected ECA\* at 2015

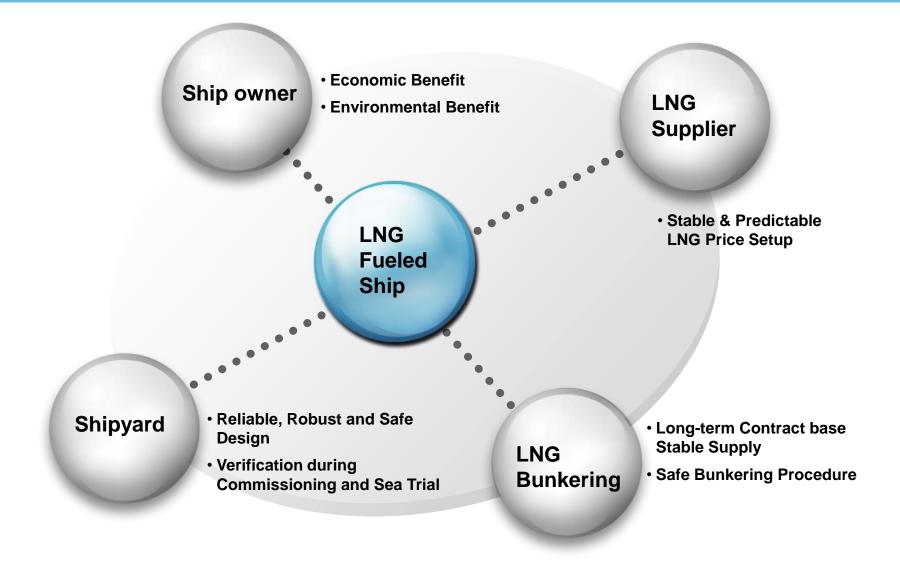

#### Economic Evaluation for Various LNG Price Scenarios

| HFO                   | USD/ton   | 630                                 | (2011-5-19 Sin | ngapore IFO380 | price)     |            |
|-----------------------|-----------|-------------------------------------|----------------|----------------|------------|------------|
| MGO                   | USD/ton   | 930 (2011-5-19 Singapore MGO price) |                |                |            |            |
| LNG Bunkering Price   | USD/mmbtu | 6                                   | 8              | 10             | 12         | 14         |
| LING DUIIKening Frice | USD/ton   | 285.53                              | 380.71         | 475.88         | 571.06     | 666.24     |
| OPEX Saving           | USD/year  | 23,722,196                          | 19,788,869     | 15,855,543     | 11,922,216 | 7,988,890  |
| Fuel Cost Saving      | USD/year  | 26,576,482                          | 22,643,155     | 18,709,829     | 14,776,502 | 10,843,175 |
| Freight Rate Impact   | USD/year  | -2,854,286                          | -2,854,286     | -2,854,286     | -2,854,286 | -2,854,286 |
| NPV (9% DR, 30 yrs)   | USD       | 166,926,746                         | 133,164,287    | 99,401,828     | 65,639,369 | 31,876,910 |
| IRR                   | %         | 41.82%                              | 36.29%         | 30.39%         | 23.99%     | 16.90%     |
| Payback Period        | Years     | 1.7                                 | 2.0            | 2.5            | 3.4        | 5.0        |

#### Operating Data (14,000 TEU Container) N

| Main Engine      |        |       |
|------------------|--------|-------|
| MCR              | 72,285 | kW    |
| Operating Rate   | 60     | %     |
|                  | 43,371 | kW    |
| SFOC             | 168.3  | g/kWh |
| Duration in ECA  | 19     | days  |
| Duration non ECA | 25     | days  |
| Aux. Engine      |        |       |
| Max.             | 15,360 | kW    |
| Operating Rate   | 2,000  | kW    |
| SFOC             | 185    | g/kWh |
| Duratin in ECA   | 29     | days  |
| Duration non ECA | 27     | days  |
| No. of voyage    | 6.43   |       |

#### • NPV and Payback Period for Various LNG Price Scenarios




**DSME** Proprietary

29

| $\bigcirc$ | INTRODUCTION           |
|------------|------------------------|
|            | DUAL FUEL ENGINES      |
| $\bigcirc$ | LNG FUEL STORAGE TANKS |
| $\bigcirc$ | FUEL GAS SUPPLY SYSTEM |
| $\bigcirc$ | LNG BUNKERING          |
| $\bigcirc$ | SAFETY ISSUES          |
|            | LNG FUELED SHIPS       |
|            | CONCLUSIONS            |

### **Considerations for LNG Fueled Ship**



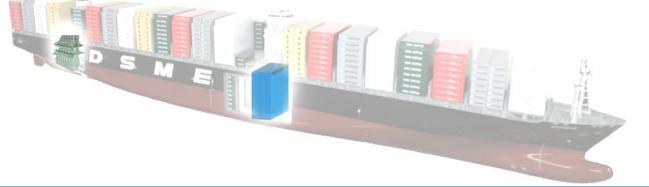
DAEWOO SHIPBUILDING & MARINE ENGINEERING CO.,LTD.

### **Summaries and Conclusions**

#### LNG Fueled Large Commercial Ship Design

- Dual fuel engines + Fuel storage tank + FGS system
- LNG bunkering infrastructure
- Safety design & operation procedures
- Development of various LNG fueled ship design

#### Environment Friendly Operations


- Reduction of exhaust emission (CO2, SOx, NOx)

#### Cost-Effectiveness of LNG Fuel

- Environment and operation cost saving

| Ship Type                       | Annual Fuel Cost Saving           |
|---------------------------------|-----------------------------------|
| Typical Large<br>Container Ship | Approx. 12 ~ 20 mil. USD per year |
| Typical VLCC                    | Approx. 6 ~ 12 mil. USD per year  |

\* Based on fuel prices of HFO(\$630/ton), MGO(\$930/ton) and LNG(\$8 ~ \$12/MMBTU)



# Thank you for your attention

