Meeting the Challenges for Tomorrow’s Power Generation
Using Variable Intake Valve Train for Gas Engines
The role of the gas engine in power generation

Source:
Content

- Challenges for tomorrow’s gas engines
- Variable intake valve timing as a key technology
- Summary
Content

- Challenges for tomorrow’s gas engines
- Variable intake valve timing as a key technology
- Summary
Challenges for tomorrow’s gas engines
Gas quality issues

Fossil Resources
- Natural Gas

Biomass
- Biogas
- H₂
- CH₄
- Methanation

Renewable Gases
- PowerToGas
- Solar
- Wind
- Biomass
- Natural Gas

Gases
- Flare Gas
- BFG
- Waste Gases

Engine

Electric Grid

Source:
Challenges for tomorrow’s gas engines

Gas quality issues

- Harmonization process for European gas grid has started
 - European Association for the Streamlining of Energy Exchange
 - European Standard 16726

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rel. density</td>
<td>m³/m³</td>
<td>0.555</td>
<td>0.700</td>
</tr>
<tr>
<td>Wobbe</td>
<td>MJ/m³</td>
<td>48.6</td>
<td>56.9</td>
</tr>
</tbody>
</table>

EASEE Gas

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rel. density</td>
<td>m³/m³</td>
<td>0.555</td>
<td>0.700</td>
</tr>
<tr>
<td>MN</td>
<td>-</td>
<td>65</td>
<td></td>
</tr>
</tbody>
</table>

EN 16726

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rel. density</td>
<td>m³/m³</td>
<td>0.555</td>
<td>0.700</td>
</tr>
</tbody>
</table>
Challenges for tomorrow’s gas engines
Volatile renewable energy

Source:
Challenges for tomorrow’s gas engines

Volatile renewable energy – stabilize grid

Source: Energy Matters, Did Portugal run for four days on renewables alone? (http://euanmears.com/did-portugal-run-for-four-days-on-renewables-alone)
Challenges for tomorrow’s gas engines

Transient response requirements

- **ENTSO-E** (Type C 1MW < P < 50MW)
 - 30 seconds to synchronize to the network
 - 10% loading in 4 seconds as spinning reserve
 - Stay connected to the network in a frequency band of ±10%

- **ISO 8528-5** (Class G3)
 - Tolerated frequency drop 15%
 - Tolerated voltage drop 15%
 - Recovery time 3s
Challenges for tomorrow’s gas engines

Emission limits

• Lower emission limits up ahead

<table>
<thead>
<tr>
<th></th>
<th>NOx mg/m³ Norm @ 5% O2</th>
<th>CH4 mg/m³ Norm @ 5% O2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA Luft</td>
<td>500</td>
<td>1733</td>
</tr>
<tr>
<td>MCPD</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>TA Luft 2017*</td>
<td>100</td>
<td>TA Luft 2017*</td>
</tr>
</tbody>
</table>

* Proposal
Content

• Challenges for tomorrow’s gas engines
• Variable intake valve timing as a key technology
• Summary
Variable intake valve timing as a key technology

ABB’s Valve Control Management – VCM®

- Electro-hydraulic valve train system
- Variation of timing and lift of the intake valves

Operating principle:

1. **Solenoid valve CLOSED**
 - Valves follow cam profile

2. **Solenoid valve OPEN**
 - Oil pressure drops
 - Springs close the valve

3. **Brake ramp**
 - Hydraulic brake reduces seating velocity

Source:
Variable intake valve timing as a key technology

ABB’s Valve Control Management – VCM®

- Electro-hydraulic valve train system
- Variation of timing and lift of the intake valves

Advantages:
- Cylinder individual control
- Cycle-to-cycle variable adjustment of IVC
- Closes much faster than a mechanical valve train
- Soft landing due to hydraulic brake

Main components

- Intake valves
- Oil chamber
- Rocker arm
- Brake unit
- Solenoid valve
- Pump unit
- Push rod

Source:
Variable intake valve timing as a key technology
Increased engine efficiency

Variable intake valve timing as a key technology
Increased flexibility to boundary conditions

Changing the engine's power control strategy

Different valve timing (compared to mechanical valvetrain) → more aggressive Miller

Cooler cylinder charge

Reduced knock tendency

Increased engine efficiency

→ +25°C MAT or
→ +20 points MN

Increased knock margin

Source:
Variable intake valve timing as a key technology
Improved transient response

ISO 8528-5 Class G2

Source:
Content

• Challenges for tomorrow’s gas engines
• Variable intake valve timing as a key technology
• Summary
Summary

Challenges for tomorrow’s gas engines

Gas quality issues

- Harmonization process for European gas grid has started.
- European Association for the gas industry.
- European Standard 16726.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASEE Gas</td>
<td>Rel. density</td>
<td>m³/m³</td>
<td>0.555</td>
</tr>
<tr>
<td>EN 16726</td>
<td>Wobbe</td>
<td>MJ/m³</td>
<td>48.6</td>
</tr>
</tbody>
</table>

Volatile renewable energy – stabilize grid

Emission limits

- Lower emission limits up ahead.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Norm</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>mg/m³</td>
<td>5% O₂</td>
</tr>
<tr>
<td>CH4</td>
<td>mg/m³</td>
<td>5% O₂</td>
</tr>
</tbody>
</table>

TA Luft 2017*
Summary

VVT as a key technology

Variable intake valve timing as a key technology

Increased engine efficiency

Variable intake valve timing as a key technology

Increased flexibility to boundary conditions

Changing the engine’s power control strategy

Increased engine efficiency

Variable intake valve timing as a key technology

Improved transient response

Cooler cylinder charge

Reduced pumping losses

ISO 8528-5 Class G2
CONTACT:

Dipl.-Ing. Dr. techn. Jan Zelenka • Area Manager NG & NNG Combustion • Email: jan.zelenka@lec.tugraz.at
LEC GmbH • Inffeldgasse 19 • A-8010 Graz, Austria • Phone: +43 (316) 873-30081 • Fax: +43 (316) 873-30102 • www.lec.at