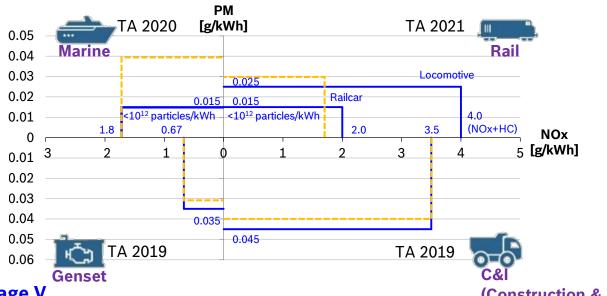
Bosch Technologies to achieve Ultra Low Emissions and an Assessment what is feasible in short term.

- 1) Emission legislation for Large Engine segment
- 2) Feasibility study for EU Stage V by Single Cylinder Engine
- 3) Outlook for possible Emission Levels with existing Technologies
- 4) Bosch Technologies to achieve Ultra Low Emissions
- 5) Summary



- 1) Emission legislation for Large Engine segment
- 2) Feasibility study for EU Stage V by Single Cylinder Engine
- 3) Outlook for possible Emission Levels with existing Technologies
- 4) Bosch Technologies to achieve Ultra Low Emissions
- 5) Summary

Emission legislation for Large Engine segment EU Stage V and US EPA Tier 4

Comparison EU Stage V & EPA Tier 4

* Current Status:

European Parliament has adopted on July 5th 2016 the regulatory text with minor changes.

Retrofitting of engines to stage V will be assessed in 2018.

Legislation will come into effect with type approval (TA) of gensets on January 1st 2019.

EU Stage V

(Construction & Industry)

- In general, focus on particulates and NO_x emissions
 - → DOC/DPF & SCR exhaust gas treatment will be required in some cases

EPA Tier 4

Already equipped today with either EGR, EGR+DPF or SCR

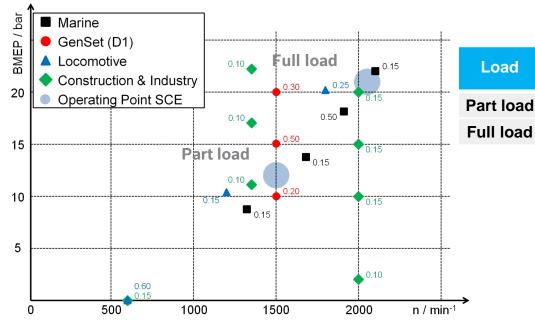
- 1) Emission legislation for Large Engine segment
- 2) Feasibility study for EU Stage V by Single Cylinder Engine
- 3) Outlook for possible Emission Levels with existing Technologies
- 4) Bosch Technologies to achieve Ultra Low Emissions
- 5) Summary

Feasibility study for EU Stage V by Single Cylinder Engine Setup: Engine specification and Engineering target

Specification of Single Cylinder Engine (SCE)				
Displacement	2.54			
Peak firing pressure	250 bar			
Rated Speed	2300 min ⁻¹			
NMEP _{max}	31 bar			
Power density	~ 50 kW/l			
Injection system	Common rail			

	Limit EU Stage V		Engineering Target	
EU Stage 5 Application	NOx [g/kWh]	PM [g/kWh]	NOx [g/kWh]	Soot [g/kWh]
Marine (>300 kW)	1.80	0.015	1.35	0.006
Locomotive	4.00	0.025	2.94	0.010
Railcar	2.00	0.015	1.47	0.006
GenSet	0.67	0.035	0.49	0.014
Construction & Industry	3.50	0.045	2.57	0.019

Engineering Target


- Margin for NOx and PM considering deterioration over run time
- Ratio of PM and Soot based on experience

Bosch Modular Common rail injection system (MCRS) is used to achieve flexible fuel injection Engineering target considering deterioration and PM/Soot ratio

Feasibility study for EU Stage V by Single Cylinder Engine

Setup: Testing points

[min⁻¹] [bar] [bar] 1500 12 13 2050 21 23

BMEP

Speed

Key parameters:

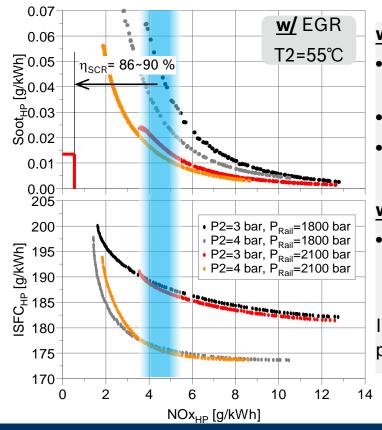
- Boost pressure simulate single stage, two stage T/C
- EGR with, without

NMEP

Injection pressure & timing

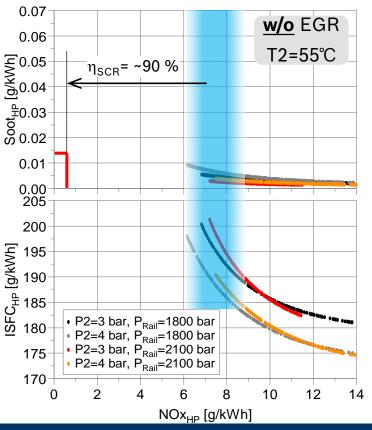
Testing points:

2 testing points are defined based on weighting factors of 4 segments.


2 testing points (Full load and part load) are selected for SCE test

Feasibility study for EU Stage V by Single Cylinder Engine

Result@Full load: Genset application (w/o PN limitation)


w/ EGR

- Cannot fulfill emission target→SCR required (= complex system)
- Higher rail pressure required for PM limit
- 2 stage TC increase emission margin

w/o EGR

Fulfill emission target with high NOx conversion of SCR

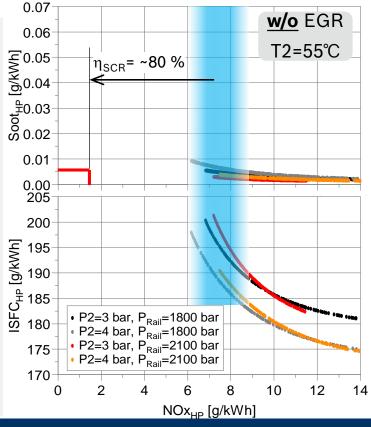
Improvement of ISFC with higher rail pressure is minor



SCR only application can achieve emission targets and will be cost attractive solution

Feasibility study for EU Stage V by Single Cylinder Engine

Result@Full load: Marine application (w/ PN limitation)


DPF necessary to fulfill PN limitation

w/ EGR

- Hard to fulfill NOx emission target
 →SCR required (= complex system)
- Higher rail pressure and charge pressure recommended to reduce engine out soot
 →reduction of DPF load

w/o EGR

- Lower NOx conversion compare to Genset
- Already low engine out soot at rail pressure <2000bar

DPF + SCR only application can achieve emission targets and will be cost attractive solution

Feasibility study for EU Stage V by Single Cylinder Engine Summary

Application w/o PN limit:

	w/ EGR	w/o EGR
For all Applications	2200bar: Good Soot-NOx tradeoff Good ISFC-NOx tradeoff	1800bar: Better ISFC-NOx tradeoff
GenSet ්	1 stage TCSCRDOC optional	▶ 1 stage TC▶ SCR▶ DOC optional
Locomotive	 2 stage TC Without SCR DOC DPF optional 	▶ 1 stage TC▶ SCR▶ DOC optional
Construction	2 stage TCWithout SCRDOC	▶ 1 stage TC▶ SCR▶ DOC optional

EU stage 5 technologies will be copied:

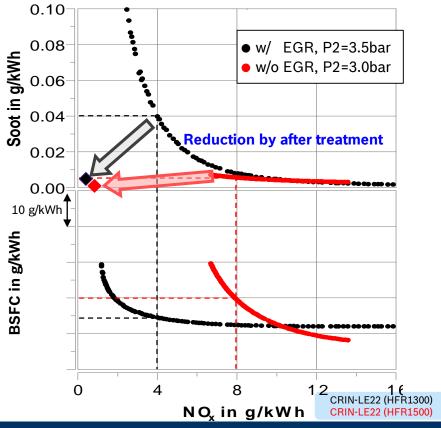
- GenSet and C&I: from EPA Tier 4 applications
- Locomotive: from EU 3b applications

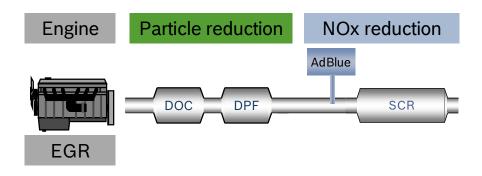
Application w/ PN limit:

	w/ EGR	w/o EGR
For all Application	1800bar: feasible 2200bar: Better Soot-NOx tradeoff	1800 bar: Better ISFC-NOx tradeoff
Marine	2 stage TCWithout SCR	▶ 1 stage TC▶ SCR
Railcar	2 stage TCWithout SCR	▶ 1 stage TC▶ SCR

DOC and DPF are necessary to fulfill PN limit.

SCR w/o EGR for best fuel economy and lowest complexity


EGR requires high EGR rates with increased charging pressure and improved EGR cooling to achieve acceptable fuel consumption.



- 1) Emission legislation for Large Engine segment
- 2) Feasibility study for EU Stage V by Single Cylinder Engine
- 3) Outlook for possible Emission Levels with existing Technologies
- 4) Bosch Technologies to achieve Ultra Low Emissions
- 5) Summary

Outlook for possible Emission Levels with existing Technologies Combination of existing technologies (Full load)

For EU Stage V...

NOx: SCR w/o EGR is sufficient

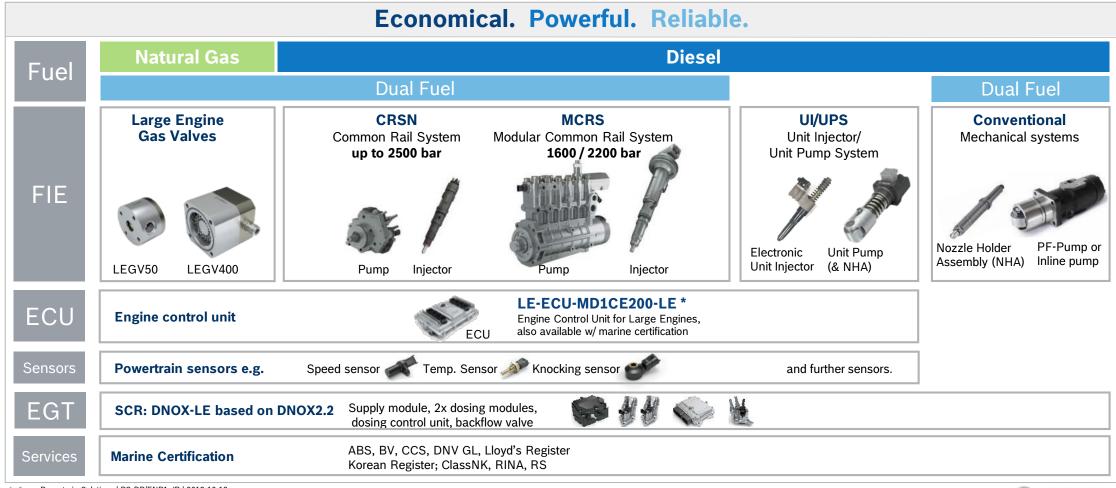
Soot: DOC/DPF is option in case no PN limitation

For Ultra Low emission...

NOx: **EGR** for low engine out emission + **SCR** for further reduction at tailpipe

Soot: With **DOC/DPF**, tailpipe emission can be reduced

Combination of EGR and after treatment (SCR+DPF) enable ultra low Emissions



- 1) Emission legislation for Large Engine segment
- 2) Feasibility study for EU Stage V by Single Cylinder Engine
- 3) Outlook for possible Emission Levels with existing Technologies
- 4) Bosch Technologies to achieve Ultra Low Emissions
- 5) Summary

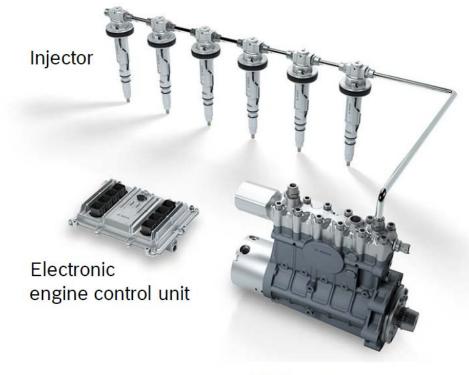
Bosch Technologies to achieve Ultra Low Emissions

Product Portfolio

Bosch Technologies to achieve Ultra Low Emissions MCRS-22 for best Mixture Preparation

 The MCRS is a Modular Common-Rail System with injectors, high-pressure pump, and an ECU tailored for large engines.

System pressure levels: 1600 / 2200 bar

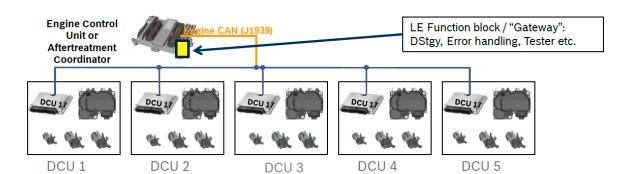

Power range: 500 kW to 5000 kW

Injector: Multi injection up to 5 inj./cycle

Pump: 2-5 plunger types available

ECU: Large engine specific

MCRS provides flexibility to improve combustion strategy


High-pressure pump

Modular Common Rail System (high pressure pump, injector and ECU) enables very low tailpipe emissions.

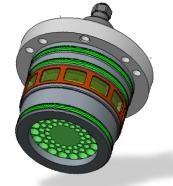
Bosch Technologies to achieve Ultra Low Emissions DENOX-LE System

- Automotive base SCR system
- One module (system) is consist of 2x Dosing Modules, 1x supply module 1x ETI (Backflow valve) and Dosing control unit.
- One module can support engines up to 1 MW
- Modular expandable 1..5 DENOX-LE system via CAN-Bus (20kg/h...100kg/h).
 - Equals need for 1MW...5MW- engines.

Automotive base DENOX-LE system is reliable SCR system covering 1MW...5MW engines.


Bosch Technologies to achieve Ultra Low Emissions LEGV

Gas engine has a potential to achieve very low emissions


LEGV (Large Engine Gas Valve) is Cylinder-individual gas admission valve for SI & DF engines


Features of Bosch LEGV

- **High lifetime of up to 720 mill. load-cycles**, which corresponds to approx. 16,000 h @ 1500rpm → Reduce TCO (Total Cost Ownership)
- Support the optimization of HC slip and transient response time of engine
- Modular gas valve design allows adaptation to engine specific flow rates and housing incl. Marine
 - → Customer specific design

Reduce TCO by high lifetime and flexible design by modular concept

- 1) Emission legislation for Large Engine segment
- 2) Feasibility study for EU Stage V by Single Cylinder Engine
- 3) Outlook for possible Emission Levels with existing Technologies
- 4) Bosch Technologies to achieve Ultra Low Emissions
- 5) Summary

Bosch Technologies to achieve Ultra Low Emissions and an Assessment what is feasible in short term

Summary

- 1. Meeting today's most stringent emission regulations EU Stage V and EPA Tier 4 is feasible with state-of-the-art system configurations including Common Rail, SCR and DPF
- 2. The combination of EGR plus SCR and DPF allows OEMs to target ultra low emissions beyond today's requirements

Bosch contributes with technical solutions to allow engine OEMs achieving ultra low emissions using

- MCRS-22 Injection system
- Engine Control Unit MD1CE200
- DENOX-LE system
- Gas Admission Valve LEGV

Thank you very much for your attention

