Change Together!

Experienced Emission Reduction Technologies and Eco-friendly Solution of HiMSEN Engine

Keun-sup Woo Hyundai Heavy Industries 10th CIMAC Cascade / Oct 12th 2018

Contents

- Introduction
 - Emission Limits
 - NO_X reduction methods
- Experienced Emission Reduction Technologies
 - ChAM(Charge Air Moisturizer) + EGR(Exhaust Gas Recirculation)
 - TSTC(Two Stage Turbo-Charger) + EGR
 - Diesel Engine with SCR
 - Dual Fuel Engine
- Summary

Introduction

Emission Limits

Introduction

NOx reduction methods

Introduction

- Measures for the IMO Tier III NO_X emission limit
 - There is no exclusive method to be able to comply with IMO Tier III limit except SCR
 - Combination of two reduction methods or more has possibility being able to afford to follow Tier III limit
- Available combinations to follow the Tier III NO_X emission limit
 - EGR & Water addition
 - 2-stage T/C & EGR
 - 2-stage T/C & Water addition

Charge Air Moisturizer (ChAM)

- NO_X reduction by water addition
 - Water addition into combustion chamber
 - \rightarrow Increase of specific heat of combustion air
 - \rightarrow Decrease of combustion peak temperature
 - \rightarrow Reduction of NO_X (thermal NO_X)
- Water addition methods and NO_X reduction rate
 - Water in fuel emulsion : 20 ~ 30%
 - Water injection into combustion chamber : 30 ~ 50%
 - Charge air humidification : 40 ~ 60%

Charge Air Moisturizer (ChAM)

- Charge Air Moisturizer
 - Water and steam injection into intake air
 - Flow of humidified intake air into combustion chamber
 - Reduction of NO_X emission : 40~60%

Exhaust Gas Recirculation(EGR)

- Concept
 - Returning of a portion of engine's exhaust gas into intake air to increase heat capacity and to reduce oxygen content of combustion air
 - Decrease of peak combustion temperature
 - Reduction of NO_x emission : 30~60%

Experimental Setup

EGR system

Test Results of EGR System

- Intake air temperature
 - No noticeable variance with EGR rate
 - EGR gas is cooled through scrubber and EGR cooler
 - Mixed gas (charge air and EGR gas) is cooled through air cooler
- Exhaust gas temperature
 - Temperature increase with higher EGR rate
 - Increased later combustion due to decreased combustion rate
 - Reduced charge air flow due to lowered charge air pressure

Test Results of EGR System

- NO_X reduction and SFOC
 - SFOC increases while NO_X decreases with higher EGR rate due to longer burning duration
 - Optimized combustion and fuel injection timing are required to control increased SFOC and smoke with EGR rate

- DeNOx index
 - DeNOx index = {(η_{NOx})_{EGR} + (η_{NOx})_{ChAM}} / 10
 - $(\eta_{NOx})_{EGR}$: NOx reduction efficiency with EGR

 $(\eta_{NOx})_{ChAM}$: NOx reduction efficiency with ChAM

Test Results of ChAM + EGR

- NOx reduction by ChAM + EGR system
 - ChAM system only : 47.5 %[†]
 - ChAM + EGR system : 75.4%[†]

% NOx reduction efficiency

= $100 - NO_x(\%)$ with EGR x $NO_x(\%)$ with ChAM

EGR	ChAM	Compound system	
Reduction		Estimated*	Test result
46%	47.5%	72%	68.2%
55%		76.2%	75.4%

+ : compared with ref. condition

Test Results of ChAM + EGR

- Emission and SFOC
 - Increase of CO due to poor combustion condition
 - No noticeable increase of THC
 - The more NO_x reduction, the worse SFOC

Two Stage Turbo-Charging + EGR

Two Stage Turbo-Charger

- TSTC with intercooler can increase turbocharger efficiency and provide high charge air pressure.
- The availability on the high charge air pressure allows extreme Miller(Adv. IVC) that increase engine thermal efficiency at same NOx emission level.
- There is potential with combustion system improvement to increase engine thermal efficiency.

⁽Typical Turbocharger Efficiency vs Pressure Ratio)

Experimental Setup

TSTC+EGR system

Test Results of TSTC + EGR

- TSTC system IMO Tier II NO_x setting can reduce SFOC by 5%
- TSTC + EGR system can reduce NO_X by 75% or more
 - shows worse SFOC than SSTC Tier II system

Diesel Engine + SCR

Diesel Engine with SCR

- Conventional diesel combustion for diesel mode
 - Meets IMO Tier II NOx regulation
- SCR reduces NOx emission to meet IMO Tier III regulation

Diesel Engine with SCR

✓ SCR requirements

✓ Solution(major changes)

DF(Dual-Fuel) Engine

DF Engine

- Conventional diesel combustion for diesel mode
 - Meets IMO Tier II NOx regulation
- Pre-mixed lean combustion for gas mode
 - Meets IMO Tier III NOx regulation

DF Engine

Dual-Fuel Engine: Principle of DF Engine Operation

DF Engine

Summary

Summary

- EGR system can reduce NO_X by 60% or more
- EGR + ChaM system can reduce NO_X by 75% or more
- TSTC system with IMO Tier II NO_X setting can reduce SFOC by 5%
- TSTC+ EGR system can reduce NO_X by 75% or more
 - Shows worse SFOC than SSTC system to meet IMO Tier III
- Diesel engine + SCR system can meet IMO Tier III regulation
 - SFOC remains same to IMO Tier II system on IMO Tier II mode
- Dual fuel engine can meet IMO Tier III regulation
 - Gas mode can be a solution for NO_X , SO_X , SMOKE, PM

