YANMAR SCR Technology for IMO Tier III

12th Oct. 2018 YANMAR CO., LTD.

About YANMAR SCR system

- -History of YANMAR SCR technology development
- -Outline of YANMAR SCR system
- -Certification of SCR System
- -YANMAR SCR line up & delivery record
- -SCR for main engine

- About YANMAR SCR system
 - -History of YANMAR SCR technology development
 - -Outline of YANMAR SCR system
 - -Certification of SCR System
 - -YANMAR SCR line up & delivery record
 - -SCR for main engine
- Summary

Transition of environmental regulations

NOx reduction technology for IMO Tier3

YANMAR selected SCR technology to comply IMO Tier3

About YANMAR SCR system

- -History of YANMAR SCR technology development
- -Outline of YANMAR SCR system
- -Certification of SCR System
- -YANMAR SCR line up & delivery record
- -SCR for main engine

About YANMAR SCR system

- -History of YANMAR SCR technology development
- -Outline of YANMAR SCR system
- -Certification of SCR System
- -YANMAR SCR line up & delivery record
- -SCR for main engine

History of SCR technology development

2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
			Enduran		Enduran				durance t	
	technolo elopment		(Phas	e 1)	(Phas	e 2)			(Phase 3)	
							YA	иманта		
							THE'			
200, 000, 000, 001, 001, 001, 000, 001, 00	rch resu -road Die									
				-board te Phase 1)	st			On-boa (Phas		
								-		
									SOT SHALLS	

History of SCR technology development

We began developing base technologies of SCR since 2007.

We have experienced 3 times Endurance test and 2 times On-Board test.

Endurance test (on land)

Elemental technology development such as catalyst deterioration and verification of control logic.

On-Board test

Demonstration of the durability of the whole system and the catalyst life. Verification of SCR system operation method such as maintenance.

History of SCR technology development

On-board test of SCR system

225,000ton Cargo vessel

SCR operation sequence

	Within supposed ECA	Without supposed ECA
Fuel (on MGO test)	MGO	HFO
Fuel (on HFO test)	HFO	HFO
IMO regulation	Tier3	Tier2
SCR operation	ON	OFF
Exhaust gas line	SCR	Bypass

Demonstration of the durability of the whole system and the catalyst life. Verification of SCR system operation method such as maintenance.

Onboard Test of SCR System

Performance at the end of the test ⇒ NOx reduction rate > 80%

About YANMAR SCR system

- -History of YANMAR SCR technology development
- -Outline of YANMAR SCR system
- -Certification of SCR System
- -YANMAR SCR line up & delivery record
- -SCR for main engine

Reactor design concept

- SCR reactor was unitized from bypass branch to catalytic reactor.
 And Integration of catalytic reactor and bypass line.
- **⇒** No need for bypass line pipe space.
- Urea injection nozzle is installed on the downstream of the branch to prevent Urea leak to the bypass side.
- ⇒ More safety design for the crew.
- The junction part of bypass line and catalyst line is designed to prevent deterioration of catalyst due to backflow of exhaust gas during bypass operation
- ⇒ Longer life of catalyst.

Integrated control

•All equipments including catalytic reactor are auto controlled integrally by control panel.

1 Control panel and 1 pump unit can operate multiple SCR

•SCR reactor and nozzle unit should be installed for each engine. But 1 control panel and 1 pump unit are installed <u>per 1 vessel</u>.

About YANMAR SCR system

- -History of YANMAR SCR technology development
- -Outline of YANMAR SCR system
- -Certification of SCR system
- -YANMAR SCR line up & delivery record
- -SCR for main engine

Certification of SCR system

In "Scheme A", the engine and SCR system are tested for certification, as one unit, on the test bench.

In "Scheme B", the engine and SCR are certified respectively.

After that, SCR is fitted to engine, and the engine and SCR system is tested for verification on-board

YANMAR SCR system is certificated by Scheme A. ⇒ On-board performance is more reliable.

Bench test of SCR system

About YANMAR SCR system

- -History of YANMAR SCR technology development
- -Outline of YANMAR SCR system
- -Certification of SCR System
- -YANMAR SCR line up & delivery record
- -SCR for main engine

YANMAR SCR system line up (for Auxiliary engines)

For medium speed diesel engines with 355 to 4800 kW.

SCR	Reactor size			Piping size		Engine	
model	el	W	L	DN	LP	model	
Y16SCR-L	1080	750	2230	250A	2560	6NY16LWS	
1103CR-L	1080	750	2380	250A	2560	ONTIOLWS	
Y165SCR-L	1140	750	2600	300A	2530	6N165LWS	
11055CR-L	1140	750	2750	300A	2530		
Y18SCR-(A)L	1140	750	2600	300A	2930	6EY18(A)LWS	
1103CR-(A/L	1140	750	2750	300A	2930		
Y22SCR-(A)L	1480	1100	2770	400A	3620	6EY22(A)LWS	
1223CR-(A)L	1480	1100	2920	400A	3620		
Y26SCR-6L	1700	1430	3490	500A	4300	6EY26LWS	
Y26SCR-8L	1920	1430	3360	550A	4300	8EY26LWS	
1203CK-8L	1920	1430	3510	550A	4300		
Y33SCR-6L	2080	1750	3850	650A	5120	6EY33LWS	
Y33SCR-8L	2430	1760	3900	750A	6100	8EY33LWS	

※Please contact us for more details.

YANMAR SCR delivery record

Delivery record: 150 units

Number of orders in hand: 80 units scheduled for this year

Catalytic reactor

Shop test of Urea dosing system at Amagasaki factory

About YANMAR SCR system

- -History of YANMAR SCR technology development
- -Outline of YANMAR SCR system
- -Certification of SCR System
- -YANMAR SCR line up & delivery record
- -SCR for main engine

SCR for main engine

We prepare SCR system not only for Auxiliary engine but also for Main engine.

Our main engine is installed on following vessels mainly.

The engine room of these vessels is smaller than the Ocean-going Vessel.

Difference of SCR reactor between auxiliary engine and main engine

In the case of vessel with small engine room, flexibility of piping is required.

SCR reactor for Auxiliary engine (with bypass)

- Longer catalyst life
- Redundancy
- Space saving with bypass pipe
- No change in back pressure outside the ECA

SCR reactor for Main engine (without bypass)

- Short size
- Flexibility of piping (1 bend allowing)

Concern

Urea is deposited on the pipe surface
 ⇒Keep injection nozzle away from wall.

 Distribution of NH3 is biased at inlet of the catalyst.

And NOx reduction rate is decreased.

⇒Sufficient catalyst volume.

We are studying methods to predict these factors more accurately by using 3D model analysis.

Concern

- Urea is deposited on the pipe surface
 ⇒Keep injection nozzle away from wall.
- Distribution of NH3 is biased at inlet of the catalyst and NOx reduction rate is decreased.
 - ⇒Sufficient catalyst volume.

Prediction by using 3D model analysis (Software: FIRE v2017)

Concern

- Urea is deposited on the pipe surface
 ⇒Keep injection nozzle away from wall.
- Distribution of NH3 is biased at inlet of the catalyst and NOx reduction rate is decreased.
 ⇒Sufficient catalyst volume.

Prediction by using 3D model analysis (Software: FIRE v2017)

High possibility of deposition when wall film is formed and wall temperature is lower.

We have improved analysis accuracy by conducting verification test.

On verification test, we increased the urea water injection quantity intentionally to deposit urea.

Wall temperature and Wall film formation of analysis

Actual deposit of Verification test

Variation of SCR reactor for main engine

Multiple types of reactor are available depending on usage

2 Engines-1 Shaft or 2 Engines-2 Shafts	1 Engine-1 Shaft (no redundancy)				
(provided redundancy)	Use SCR only within ECA	Always use SCR			
Bypass-less	With bypass line	With emergency bypass line			
	Valve to prevent backflow Bypass line Changeover valve	Bypass line for emergency Changeover valve Piping diameter of bypass line can be small depend on allowable back pressure for engine.			

Variation of SCR reactor for main engine

Multiple types of reactor are available <u>depending on usage</u>
Bending type is also the same as Straight type

2 Engines-1 Shaft or 2 Engines-2 Shafts	1 Engine-1 Shaft (no redundancy)					
(provided redundancy)	Use SCR only within ECA	Always use SCR				
Bypass-less	With bypass line	With emergency bypass line				
Bend pipe	Valve to prevent backflow Bypass line Changeover valve	Bypass line for emergency Piping diameter of bypass line can be small depend on allowable back pressure for engine.				

1 Control panel and 1 pump unit can operate multiple SCR

Combination of main engine and auxiliary engine is also possible.

- About YANMAR SCR system
 - -History of YANMAR SCR technology development
 - -Outline of YANMAR SCR system
 - -Certification of SCR System
 - -YANMAR SCR line up & delivery record
 - -SCR for main engine

Summary

In-house developed SCR system with high reliability and durability

SCR systems are best matched with the respective engines.

One control panel and pump unit integrate multiple devices. It realized compact and simple system.

Engine and SCR system will be certificated as IMO tier III compliant according to the Scheme A procedure.

Now developing SCR for main engine based on customer's needs.

