

Introduction of NIIGATA remote monitoring system from the point of features and advantages with some specific applications

> 11 OCTOBER 2019 IHI Power Systems Co., Ltd.

2. Introduction of NIIGATA Remote monitoring system

3. Remote monitoring system functions (Data analysis and diagnosis)

2. Introduction of NIIGATA Remote monitoring system

3. Remote monitoring system functions (Data analysis and diagnosis)

Maritime industry issues and solutions

Issues		Solutions			
Environment	Global warming		GHG emission reduction		
		Environmental regulations	NOx regulation		
	Air pollution	U	SOx regulation		
Cost	Expensive maintenance		Optimized maintenance		
	Loss because of trouble	Economical operation	Preventive maintenance		
	Increase in fuel prices	•	Low BSFC operation		
Manpower	Succession of skills		Systemized skills		
	Decrease in crews	Operation support	Utilization of ICT		
	Aging and skill decline				

Activities for solutions

	Deint of remote menitoring evoters
GHG emission reduction	 Accumulation and using big data Review of optimized operation
NOx regulation	with past data
SOx regulation	
Optimized maintenance	Support from land office
Preventive maintenance	Failure prediction
Low BSFC operation	Diagnose device health with monitoring data
Systemized skills	Fault diagnosis
Utilization of ICT	Identifying the cause of failure
	GHG emission reductionNOx regulationSOx regulationOptimized maintenancePreventive maintenanceLow BSFC operationSystemized skillsUtilization of ICT

Product lineup of IPS engines and azimuth thrusters

Category of Engine	Typical Model	Azimuth thruster	Ship type
High Speed Diesel Engine	20FX	Not installed	Patrol boat
Medium Speed Diesel Engine	28AHX 28AHX-DF	NIIGATA Z-peller ™	Tug boat Supply vessel
Low Speed Diesel Engine	34RT	Not installed	Ferry Cargo ship

IPS can provide with an one- stop service

2. Introduction of NIIGATA Remote monitoring system

3. Remote monitoring system functions (Data analysis and diagnosis)

2.Introduction of NIIGATA remote monitoring system

History of development

2018

 Remote monitoring system for foreign ships: Start of operation \rightarrow Compatible with foreign communications Delivery record Tug boat: 4 ships (August 2019) Remote monitoring system for marine : Start of development 2009 2011 Remote monitoring system for domestic ships: Start of operation 1996 \rightarrow Compatible with domestic communications Delivery record Tug boat: 10 ships Remote monitoring system Other: 2 ships for land power plant (August 2019) : Start of operation

2. Introduction of NIIGATA remote monitoring system

NIIGATA Remote monitoring system

11 OCT 2019 Copyrig

2. Introduction of NIIGATA remote monitoring system

Lineup

Туре	Ship side		Communication method				Land side				
	Display monitoring data	Failure prediction	Fault diagnosis	Mobile	Satellite	User internet facilities	Mobile (roaming)	Display monitoring data	Storage and summarize	Failure prediction	Fault diagnosis
Domestic monitoring system	0			0	0			0	0		
Foreign monitoring system	0					0	0	0	0		
Advanced system	0	0	0	0	0	0	0	0	0	0	0

2. Introduction of NIIGATA Remote monitoring system

3. Remote monitoring system functions (Data analysis and diagnosis)

Data display

Operation event

Summarized data

Operation data

This function displays aggregated engine operation time (overall and each loadzone),fuel consumption, alarm events, etc. with daily and monthly.

Advantages of data display functions

- Grasping the trend of fuel consumption with past operation data and exact estimation of fuel consumption for future operation.
- Quick response to troubles by sharing the accurate situation of trouble between crew on ship and support engineer on land.
- Contribution for new ship building in point of system configuration with preferable specification equipment based on analysis of stored monitoring data.

• A Failure prediction and failure diagnosis

- Our purpose of failure prediction is to avoid serious trouble in advance by detecting abnormal tendency with big data of past monitoring data.
- The failure diagnosis provides analyses case of trouble with monitoring data and serves useful information to crew for quick recovery.

Explanation of each function

Failure prediction

- This system can quickly find abnormal signs.
- This function is intended to prevent serious failure.

Failure diagnosis

- This function informs the cause of failure and how to deal.
- This assists in fast recovery.

Failure prediction function

- Our failure prediction detects 'not normal' status before reaching into failure focusing on operation data which has deep relation to failure.
- Following left side figure shows two parameters correlation and right side figure shows normality of trend operation data.

Failure diagnosis function

- Failure diagnosis function supports quick recovery by deriving the candidates of failure cause and checking elements.
- This function has internal diagnostic matrix like the center of following figure, and shows possible failure cause and related manual for procedure of inspection, dismantle and parts replacement.

Example "Main Engine cylinder No.7 exhaust gas temperature lower"

- Failure prediction function detected that the exhaust temperature began to decline 30–40 °C from the normal range.
- □ Since failure diagnosis function showed possibility of fuel injection valve failure, crew changed this valve to new one.
- In this example, this ship was able to avoid serious trouble caused of fuel injection value in advance.
 1704/08 08:59~17/04/28 14:22
 1704/08 14:25~17/05/04 16:15
 1705/04 16:15

Example "Main engine LO pressure lower"

- □ In this phenomenon, main engine LO pressure fluctuated around for 1 minute after 10 minutes of clutch ON like following figure and monitoring system predicts the failure.
- □ Two parameters correlation showed 'not normal' status and 6 months also showed downward trend 1 month ago from this phenomenon.
- □ As for this failure prediction, crew checked LO line and found air entrainment of pump.

pressure

0

2. Introduction of NIIGATA Remote monitoring system

3. Remote monitoring system functions (Data analysis and diagnosis)

4. Summary

Summary of presentation

- I explained the maritime industry and the motivation for developed an NIIGATA remote monitoring system.
- I introduced IPS engine, azimuth thruster, and the delivery record of the marine remote monitoring system along with the history of development.
- I explained the functions of the NIIGATA marine remote monitoring system. I focused on the failure prediction and failure diagnosis functions with specific examples.

Current technical issues

- Mobile may not be introduced due to legal restrictions in some countries.
- In the failure prediction, the user needs to work on updating the threshold value.
- Failure prediction can calculate the degree to the normal range, but it does not provide time for replacement.
- The failure diagnosis function does not have a preventive function.

4. Summary

• Future tasks

Tasks to solve	Activities
Reduction of ship-land communication costs	Trail of using "ASM" technology for ship-land communication.
Furthermore accurate prediction and diagnosis	Application of AI technology like machine learning, deep learning, etc. This technology would assist accurate threshold.
Optimal maintenance Calculation of replacement time	Establishment of life time prediction method for optimal maintenance. This technology would contributes reduction of maintenance costs for ship owner and optimal parts supply for our support engineer.
Effective education and support system for crew	Not only trouble shooting, but also supports the daily check of crew like work procedure and check record. This function will bring advantages which burden on crew will be reduce and growth of crew's skill will be enhanced.

thank you for your attention