Thermodynamic Challenges in Combustion Development and Turbocharging of High BMEP Medium Speed Gas Engines



Goran Kovacic Markus Bauer Dr. Alexander Knafl Dr. Gunnar Stiesch

MAN Diesel & Turbo SE



## Leading Example: The New V35/44G TS

Main Technical Data



| Specification | Dimension         | 50 Hz           |        | 60    | Hz     |
|---------------|-------------------|-----------------|--------|-------|--------|
| Bore / Stroke | mm                | 350 / 440       |        |       |        |
| Swept volume  | liter/cyl.        | 42.3            |        |       |        |
| V-Angle       | 0                 | 55              |        |       |        |
| Speed         | min <sup>-1</sup> | 750             |        | 720   |        |
| Power         | kWm/cyl.          | 620             |        | 590   |        |
| BMEP          | bar               | 23.4            |        |       |        |
| Engine power  | kWm               | 12V             | 20V    | 12V   | 20V    |
|               |                   | 7,440           | 12,400 | 7,080 | 11,800 |
| Emissions     |                   | Acc. to TA-Luft |        |       |        |



# Leading Example: The New V35/44G TS

Main Technical Data





- Electrical power generation
- Focus: Maximum engine efficiency

## Applications

**Combined Cycle (CC)** 



- Electrical power generation with engine and steam bottoming cycle
- High exhaust gas temperature favorable
- Goal: Maximize total system efficiency
- Drawbacks in engine efficiency can be beneficial for total efficiency

#### Combined Heat and Power (CHP)



- Electrical power generation
- Heat generation, e.g. for district heating networks
- Utilization of all engine heats: oil, water, charge air, exhaust gas
- Optimization towards highest total efficiency or highest total earnings

**Reduction of Compression Work** 





- Reduction of compression work via two-stage compression with intercooling, approximation to ideal isothermic compression
- Higher pressure ratios achievable
- Enables enhanced Miller valve timings

Positive Effect on Pumping Work

![](_page_4_Picture_2.jpeg)

![](_page_4_Figure_3.jpeg)

#### **Boundary conditions**

- Constant air-fuel ratio
- Constant valve timings

- Increase of scavenging pressure and gain from pumping loop
- Lowering of knock tendency due to better scavenging effect

Choice of Best Charge Air Pressure Control Strategy

![](_page_5_Picture_2.jpeg)

![](_page_5_Figure_3.jpeg)

- Choice of optimal charge air pressure control device and strategy leads to further increase in turbocharging efficiency and even wider operating range regarding ambient pressures and temperatures
- Factors to consider: efficiency, compressor/turbine sizes, operation within compressor maps, VTA operational range

Choice of Best Charge Air Pressure Control Strategy

![](_page_6_Picture_2.jpeg)

< 7 >

![](_page_6_Figure_3.jpeg)

Corrected volumetric flow rate [m<sup>3</sup>/s]

- Choice of optimal charge air pressure control device and strategy leads to further increase in turbocharging efficiency and even wider operating range regarding ambient pressures and temperatures
- Factors to consider: efficiency, compressor/turbine sizes, operation within compressor maps, VTA operational range

#### Two-stage turbocharging as a key technology for higher BMEP and efficiency

### Miller Valve Timing Influence of Max. Valve Acceleration

![](_page_7_Picture_1.jpeg)

![](_page_7_Figure_2.jpeg)

Influence factors on optimal Miller valve timing:

- Turbocharging efficiency and pressure ratio → utilization of two-stage turbocharging with intercooling
- Optimization of valve train with respect to mechanical boundary conditions, e.g. max. acceleration while sustaining cam-valve-contact, max. Hertzian stress
- Pumping loop losses because of lowered valve lift (constant acceleration) → optimization of valve train minimizes these losses
- Increased engine compression ratio  $\rightarrow$  efficiency high pressure cycle

#### Goal: Find optimum between pumping losses and gain from high pressure cycle

## **Optimization of Gas Admission**

Minimization of Fuel Consumption and HC Emissions

![](_page_8_Picture_2.jpeg)

< 9

![](_page_8_Figure_3.jpeg)

- Optimization of gas admission pipes via 3D-CFD and single cylinder tests on 35/44G (one-stage)
- Configuration for best possible mixture homogeneity adopted for 35/44G TS
- Shorter inlet valve opening phase and higher cylinder power combined with more Miller requires adjustment of gas admission timing
- Earlier gas admission reduces fuel consumption and hydrocarbon emissions

#### Power increase shrinks the available window for perfect gas admission

# **Top of the Line Efficiency with CHP**

**Optimization of Cooling System Layout** 

![](_page_9_Picture_2.jpeg)

![](_page_9_Picture_3.jpeg)

- Pre-Layout of cooling concept:
  - High degree of freedom due to 2 charge air coolers with 2 stages each (derived from SC engine)
- Pre-layout of engine configuration (compression ratio fit for high charge air temperatures)
- Optimization of parameters by DoE in GT-Suite for each layout concept:
  - Assumption of fixed temperature differences for heat exchangers
  - Engine side water flows and temperature levels, target: reach maximum thermal efficiency
- Decision for best overall concept

## **Top of the Line Efficiency**

What is the Best Overall Concept?

![](_page_10_Picture_2.jpeg)

![](_page_10_Figure_3.jpeg)

- Constant earnings along the 4 lines shown
  - e.g. for power/heat value 2: loss of 1% η<sub>total</sub> can be compensated by gain of 1% η<sub>engine,el.</sub>
- Target for optimization: Max(C \* η<sub>engine,el.</sub> + η<sub>thermal</sub>)
  C : power/heat value

#### Optimization regarding application is needed with respect to energy type values

## **Top of the Line Efficiency**

What is the Best Overall Concept?

![](_page_11_Picture_2.jpeg)

![](_page_11_Figure_3.jpeg)

- Heats available at certain temperature level
- Loss of heats that are below the current utility water level can be minimized by choosing an optimized system layout

#### Boundary conditions have impact on achievable efficiency

## **Efficiency Improvements CHP**

![](_page_12_Picture_1.jpeg)

![](_page_12_Figure_2.jpeg)

## Summary

![](_page_13_Picture_1.jpeg)

- Motivation for two-stage turbocharging
  - Increased engine efficiency
  - Power density
  - Emissions reduction

#### Optimizations carried out for the new V35/44G TS

- Choice of charge air pressure control device
- Advanced Miller valve timing
- Gas admission timing
- CHP optimization

## Disclaimer

![](_page_14_Picture_1.jpeg)

All data provided in this document is non-binding.

This data serves informational purposes only and is especially not guaranteed in any way. Depending on the subsequent specific individual projects, the relevant data may be subject to changes and will be assessed and determined individually for each project. This will depend on the particular characteristics of each individual project, especially specific site and operational conditions.

## Do you have any more questions?

![](_page_15_Picture_1.jpeg)

# Coran KovacicThermodynamics PerformanceAdvanced Engineering & Exhaust AftertreatmentEngineering Four StrokeMAN Diesel & Turbo SEStadtbachstr. 186153 Augsburg, GermanyPhone: +49 (0)821 322 4737Mail: goran.kovacic@man.eu