6th CIMAC CASCADES Seminar

SAFETY DESIGN FOR MARINE GAS ENGINE

Sadao Kuwazuru YANMAR Co., LTD. Large Power Products Operation Division

YANMAR

Emission restriction schedule

CO ₂	Kyoto Protoco (2008~2012)			Post- 2020:	•Kyoto Proto Interim target :	col 1 20%	Post-Kyoto Protocol 2050 target: 50%	
				EEDI Reduction 0 ^o	EEDI Reduction	10%	EEDI Reduction 20%	
NOx g/kWh	IMO Tier1 9.8-17			IMO Tier2 7.7-14	IMO Tier3 2-3.4			
	2PA Tier 9.8-17	EPA Tier2 7.6-11	EI	PA Tier3 6.2-11		EPA Ti 1.8	er4	
PM	EPA Tier2&3 0.20		EPA interim Tier4 0.10		EPA Tier4 0.03			
g/kWh						Bla	ck carbon restriction	
Sulphur %	IMO SECA & EU Ports I 1.5%		IN	10 SECA 1.0%	IMO SECA 0.1%			
	IMO No-SECA 4.5%			IN	IO Non-SECA 3.5%	IMO Non-SECA 0.5%		
20	05	2010	0	20)15 © YANMAR Co	20	20 2025 12/20 Page1/00 YANMAR	

Low emission technology for marine engine

No. item		description	effect				Taska ta ka sakuad
		description	NOx	SOx	РМ	CO ₂	lasks to be solved
1	SCR	NOx deoxidization by the catalyst	0				 Urea cost, maintenance Prevention of ammonia leakage
2	Scrubber	Removing SOx by seawater wash		0	0		 Purification of polluted seawater
3	EGR	Exhaust gas recirculation	0	_	×	×	 Engine durability Efficiency drop recovering
4	Emulsion	Combustion temperature decrease by emulsion fuel			0		 Mass pure water production device Engine durability
5	Gas engine	Operation by natural gas	0	0	0	0	 Fuel supply infrastructure Fuel storage in ships

Gas engine will be a one of the effective solution for reducing exhaust gas emission for marine engines. (yANMAR Co., Ltd. 2013/12/20 Page2/00 YANMAR

Development Policy of Marine Gas Engine

Achievement situation of gas engine performance

Safety design for marine gas engine

INDEX

- 1. Machinery space of marine gas engine
 - ESD protected machinery space
 - \cdot Gas safe machinery space
- 2. Double wall pipe
- 3. Flange of double wall pipe
- 4. Classification of hazardous area
- 5. Explosion proof of sensor and electrical device in double wall pipe
- 6. Gas flow line of GVU(Gas Valve Unit)
- 7. Others
- 8. Summary

Machinery space of gas engine

Select of machinery space • • • ESD protected machinery space or Gas safe machinery space

ESD protected machinery space

- Each machinery space is separated by a single bulkhead which can withstand the local explosion.
- \cdot One engine is installed in each machinery space.
- Fuel gas pipe is single wall (gas pressure ≤10bar)
- If gas leak in this space, the engine and gas supply are stopped and the electrical devices of non-explosion-proof type are shut off.
- A gas supply system is needed in each machinery space.
- · 2 gas detectors are needed in each machinery space. etc…

Common requirement

• Double block valves(gas supply shut off) and bleed valve(gas vent) are needed in each gas supply system

© YANMAR Co., Ltd. 2013/12/20 Page7/00

YANMAR

>

Gas safe machinery space

Gas safe machinery space

- Fuel gas pipe should be double wall structure or covered with duct. Inner pipe : Fuel gas
 Outer pipe : Ventilation air or inert gas
- Two or more engines can be installed in one machinery space. (Independent fuel gas supply system is needed in each engine)
- If pure gas engine, two or more fuel tanks are needed. etc \cdots

Common requirement

• Double block and bleed valves are needed in each gas supply system.

Recently, gas safe machinery space becomes a main trend.

© YANMAR Co., Ltd. 2013/12/20 Page8/00 YANMAR

Double wall pipe

Structure of double wall pipe

1. Air venting with mechanical device

2.Inert gas filling (≧ fuel gas pressure)

• Material of pipe : carbon steel, iron casting etc…

In the case of casting, some ribs support inner pipe and outer pipe are allowed.

© YANMAR Co., Ltd. 2013/12/20 Page10/00 YANMAR

Flange of double wall pipe

·Cross section of double wall pipe flange planned at first

Classification of hazardous area

Hazardous area

ZONE0

Area in which flammable gas is present continuously or long time.

\rightarrow In fuel gas piping

ZONE1

Area in which flammable gas is likely to occur in normal operation.

- \rightarrow · ESD protected machinery space when gas leaks
 - Ventilation space of double wall pipe(inside of outer pipe)

ZONE2

Area in which flammable gas is not likely to occur in normal operation and , if it does occur, will exist for a short period only.

Non-hazardous area

An area not considered to be hazardous, i.e. gas safe.

→Gas safe machinery space

Explosion proof of sensor and electrical device in double wall pipe

a) Sensor don't touch fuel gas directly

b) Sensor touch fuel gas directly

 \rightarrow Sensor should be correspond to ZONE1. \rightarrow Sensing probe should correspond to ZONE0. The other parts should be correspond to ZONE1.

Others

· Relief valve of exhaust gas manifold

Depending on a classification, it isn't required in its location. But, it is necessary to apply somewhere in the exhaust gas piping.

 Relief valve of charging air manifold In the case of premixing the fuel gas and charging air in the manifold or before, it is necessary.

© YANMAR Co., Ltd. 2013/12/20 Page16/00 YANMAR

Summary

- Design of marine gas engine should be corresponded to safety guideline. Machinery space should be select either ESD protected machinery space or gas safe machinery space.
- Double wall pipe or duct is needed in gas safe machinery space. And joints should be made a structure which no fuel gas leak into machinery space.
- Requirement level of explosion proof of sensors and electrical devices used in double wall pipe should be correspond ZONE 0 if it touch gas directly and ZONE 1 if it is separated from the gas.
- · The common safety indicator(IGF code) is scheduled to be approved this year.

