CIMAC Circle at SMM September 2016.

“IMO Tier III strategies under the light of changes in the oil market”

Presented by Kjeld Aabo
Director Customer support
MAN Diesel & Turbo
Copenhagen, Denmark
Existing and Future ECA Areas (DNV)
High BN oil + ACOM

Low BN oil
0.5% Sulphur Limit in International Waters
2020 or 2025?

Tell us your gut feeling!

“When will a max. 0.5% sulphur content in fuel be applied in international waters?”

Place your pin

2020

2025
NO\textsubscript{x} Reduction Technologies

Available Methods

<table>
<thead>
<tr>
<th>After Treatment</th>
<th>SCR, HP or LP</th>
</tr>
</thead>
</table>

Primary method

<table>
<thead>
<tr>
<th>EGR, HP or LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emulsion fuel</td>
</tr>
<tr>
<td>Water injection</td>
</tr>
<tr>
<td>Engine tuning</td>
</tr>
</tbody>
</table>

Possible NO\textsubscript{x} Reduction

0% 50% 100%

SCR: Selective Catalytic Reduction System; Combination of Methods also being pursued

EGR: Exhaust Gas Recirculation System

Tier III
Tier III questions

- How long time in NECA?
- Which Tier III technology?
- Which fuels?
- Logistical issues with bunkering and tank emptying of tanks?
- SOx compliance strategy
- Space requirements in engine room?
MDT Tier III Technologies

EGR = Exhaust Gas Recirculation

SCR = Selective Catalytic Reduction
EGR and SCR
Fully documented and specified
ERCS for EGR and SCR

Emission Reduction Control System (ERCS)

- Control of all valves
- Measurement of O_2 in scavenging air
- Control of NO_X reduction through control of recirculation rate (EGR blower rpm), determining scavenging air O_2
- "Near limit" control of EGR to avoid smoke

- Control of all valves
- Measurement of NO_X in exhaust gas
- Control of NO_X reduction through control of NH_3 dosing (urea dosing signal)
- Limiters for high and low NH_3 in order to avoid NH_3 slip and ABS formation
- Too low reactor inlet T=> by-pass SCR
Selection of Tier III Technology

Deciding factors:

- Yard preferences
- First cost (CAPEX)
- Space requirements
- Installation flexibility
- Owner preferences
- Operation cost (OPEX)
- Operation simplicity
- Reliability
- Maintenance cost
- Waste disposal cost

EGR On-Engine
SCR HP or LP
Tier III Solutions Layout

Flexibility in fuel and use

- Prepared for future retrofit
- EGR design
- LS fuel design
- HFO design
- EGR/SCR use in Tier II
- EGR without WTS

First costs
Interested in more information?

MDT 2-stroke ”Emission Project Guide”
Find it at www.mandieselturbo.com under:
 ”Marine Engines and Systems” /
 ”Two Stroke” /
 ”Project Guides” /
 ”Other Guides” /
 ”Emission Project Guide”

NOTE: this also includes info on:
 • SOx scrubbers
 • Combined EGR + SOx scrubber
 • SFOC penalties
 • All consumptions
 • Installation issues
 • Compliance
All data provided in this document is non-binding. This data serves informational purposes only and is especially not guaranteed in any way. Depending on the subsequent specific individual projects, the relevant data may be subject to changes and will be assessed and determined individually for each project. This will depend on the particular characteristics of each individual project, especially specific site and operational conditions.